论文标题

进化游戏和空间周期性

Evolutionary games and spatial periodicity

论文作者

Wu, Te, Fu, Feng, Wang, Long

论文摘要

我们建立了一个理论框架,以解决强烈选择下的空间游戏的进化动态。随着选择强度倾向于无限,战略竞争以赢家的确定性方式展开。我们严格地证明,进化过程很快或以后进入一个周期,从那时起,会定期重复周期,或者几乎到处都在某些状态下稳定。该结论适用于任何人口图和大量有限游戏。该框架足以揭示Nowak和May在空间游戏上的开创性工作的基本数学原理:高度对称的启动配置会导致很长的瞬态阶段,涵盖了许多非常漂亮的空间模式。对于所有启动配置,空间模式肯定是几代人的,因此合作者和叛逃者肯定会持续存在。可以扩展此框架以探索包括Snowdrift游戏,公共商品游戏(有或没有孤独者,惩罚)以及在图表上重复游戏在内的游戏。当玩家确定性地切换策略以确定依据我们的框架时,也可以完全解决志向动力。我们的结果对探索生物学和物理学上各种空间扩展系统的动态具有潜在的影响。

We establish a theoretical framework to address evolutionary dynamics of spatial games under strong selection. As the selection intensity tends to infinity, strategy competition unfolds in the deterministic way of winners taking all. We rigorously prove that the evolutionary process soon or later either enters a cycle and from then on repeats the cycle periodically, or stabilizes at some state almost everywhere. This conclusion holds for any population graph and a large class of finite games. This framework suffices to reveal the underlying mathematical rationale for the kaleidoscopic cooperation of Nowak and May's pioneering work on spatial games: highly symmetric starting configuration causes a very long transient phase covering a large number of extremely beautiful spatial patterns. For all starting configurations, spatial patterns transit definitely over generations, so cooperators and defectors persist definitely. This framework can be extended to explore games including the snowdrift game, the public goods games (with or without loner, punishment), and repeated games on graphs. Aspiration dynamics can also be fully addressed when players deterministically switch strategy for unmet aspirations by virtue of our framework. Our results have potential implications for exploring the dynamics of a large variety of spatially extended systems in biology and physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源