论文标题
比较生物网络形成的PDE模型的两个方面
Comparison of two aspects of a PDE model for biological network formation
论文作者
论文摘要
我们比较了两个部分微分方程(PDE)的解决方案,这些解决方案被视为描述复杂生物网络形成的同一模型的两个不同解释。两种方法都考虑到流过网络的介质的时间演变,我们计算了用于电导率向量$ m $,电导率张量$ \ mathbb {c} $和压力$ p $的椭圆形 - 促销PDE系统的解决方案。我们在空间二维设置中使用均匀的笛卡尔网格中使用有限差异方案来求解这两个系统,在这种系统中,抛物线方程在时间上通过半平移方案求解。由于电导率向量和张量也出现在压力$ p $的泊松方程中,因此椭圆方程隐含地取决于时间。因此,在\ Mathbb {r}^2 $中的电导率向量$ m \的情况下,我们计算三个线性系统的解决方案,以及在对称电导率张紧$ \ mathbb {c} \ in \ Mathbb {r}^r}^{r}^{2 \ times times times times times times times times times 2} $的情况下,在对称电导率张紧$ \ mathbb {c} \ in in \ mathbb {c} \ in y in time 2} $上。为了加速模拟,我们利用隐式(ADI)方法的交替方向。参数的作用对于获得详细的解决方案很重要。我们提供了许多涉及参数值的各种值的测试,以查看两个系统解决方案的差异。
We compare the solutions of two systems of partial differential equations (PDE), seen as two different interpretations of the same model that describes formation of complex biological networks. Both approaches take into account the time evolution of the medium flowing through the network, and we compute the solution of an elliptic-parabolic PDE system for the conductivity vector $m$, the conductivity tensor $\mathbb{C}$ and the pressure $p$. We use finite differences schemes in a uniform Cartesian grid in the spatially two-dimensional setting to solve the two systems, where the parabolic equation is solved by a semi-implicit scheme in time. Since the conductivity vector and tensor appear also in the Poisson equation for the pressure $p$, the elliptic equation depends implicitly on time. For this reason we compute the solution of three linear systems in the case of the conductivity vector $m\in\mathbb{R}^2$, and four linear systems in the case of the symmetric conductivity tensor $\mathbb{C}\in\mathbb{R}^{2\times 2}$, at each time step. To accelerate the simulations, we make use of the Alternating Direction Implicit (ADI) method. The role of the parameters is important for obtaining detailed solutions. We provide numerous tests with various values of the parameters involved, to see the differences in the solutions of the two systems.