论文标题
自助疗法的善解人意的AI教练
An Empathetic AI Coach for Self-Attachment Therapy
论文作者
论文摘要
在这项工作中,我们为数字教练提供了一个新的数据集和一种计算策略,旨在指导用户练习自达治疗方案。我们的框架增强了基于规则的对话代理,并具有深入学习的分类器,该分类器可在用户的文本响应中识别潜在的情感,以及一种深入学习的辅助检索方法,用于制作小说,流利和善解人意的话语。我们还制作了用户可以选择与之互动的类似人类的角色。我们的目标是在虚拟疗法课程中获得高水平的参与度。我们在n = 16名参与者的非临床试验中评估了我们的框架的有效性,在五天的时间里,所有人都至少与代理商进行了四次相互作用。我们发现,与简单的基于规则的框架相比,我们的平台在同理心,用户参与度和实用性方面的评分始终高。最后,我们根据收到的反馈提供指南,以进一步改善应用程序的设计和性能。
In this work, we present a new dataset and a computational strategy for a digital coach that aims to guide users in practicing the protocols of self-attachment therapy. Our framework augments a rule-based conversational agent with a deep-learning classifier for identifying the underlying emotion in a user's text response, as well as a deep-learning assisted retrieval method for producing novel, fluent and empathetic utterances. We also craft a set of human-like personas that users can choose to interact with. Our goal is to achieve a high level of engagement during virtual therapy sessions. We evaluate the effectiveness of our framework in a non-clinical trial with N=16 participants, all of whom have had at least four interactions with the agent over the course of five days. We find that our platform is consistently rated higher for empathy, user engagement and usefulness than the simple rule-based framework. Finally, we provide guidelines to further improve the design and performance of the application, in accordance with the feedback received.