论文标题
扭曲的线性周期和新的相对痕量公式
Twisted linear periods and a new relative trace formula
论文作者
论文摘要
我们在$ gl_ {2n} $上使用新的相对跟踪公式扭曲了线性周期。我们建立了相对基本的引理和轨道积分的传递。加上Beuzart-Plessis-liu-Zhang-Zhu的光谱隔离技术,我们能够比较相对痕迹公式的椭圆形部分,并在$ n = 1 $的情况下获得概括Waldspurger的定理的新结果。
We study the linear periods on $GL_{2n}$ twisted by a character using a new relative trace formula. We establish the relative fundamental lemma and the transfer of orbital integrals. Together with the spectral isolation technique of Beuzart-Plessis--Liu--Zhang--Zhu, we are able to compare the elliptic part of the relative trace formulae and to obtain new results generalizing Waldspurger's theorem in the $n=1$ case.