论文标题

同心孤子波的横向不稳定性

Transverse instability of concentric soliton waves

论文作者

Krechetnikov, R.

论文摘要

如果是卵石撞击水面或在水下发生爆炸,同心表面波不可避免地会传播。除可能的早期撞击时间外,有限的同心水波从分散或非线性之间的平衡中出现,导致孤立波。虽然对平面在深水和浅水上的稳定性进行了广泛的研究,但对同心孤立波没有类似的分析。在浅水上,统治孤子形成的方程式(几乎同心的korteweg-de vries)是在没有表面张力的情况下推断出来的,因此我们将推导延伸到表面张力案例上。在深水上,传统上认为,包络方程是最初衍生在笛卡尔坐标中的非线性schrödinger类型。但是,通过适合研究同心波的圆柱坐标中的系统推导,我们证明必须以反平方势进行修改适当的包膜方程,从而导致大比塔维斯基方程。 详细研究了两个模型的深水和浅水病例模型的性质,包括保护法和对应于轴对称孤立波的基本状态。后一种的稳定性分析导致了单一的特征值问题,这决定了分析工具的使用。我们确定导致同心孤子横向不稳定的条件,从而揭示了其平面对应物的关键差异。这里特别感兴趣的是表面张力和圆柱几何形状对横向不稳定性的发生的影响。

Should it be a pebble hitting water surface or an explosion taking place underwater, concentric surface waves inevitably propagate. Except for possibly early times of the impact, finite amplitude concentric water waves emerge from a balance between dispersion or nonlinearity resulting in solitary waves. While stability of plane solitary waves on deep and shallow water has been extensively studied, there are no analogous analyses for concentric solitary waves. On shallow water, the equation governing soliton formation -- the nearly concentric Korteweg-de Vries -- has been deduced before without surface tension, so we extend the derivation onto the surface tension case. On deep water, the envelope equation is traditionally thought to be the nonlinear Schrödinger type originally derived in the Cartesian coordinates. However, with a systematic derivation in cylindrical coordinates suitable for studying concentric waves we demonstrate that the appropriate envelope equation must be amended with an inverse-square potential, thus leading to a Gross-Pitaevskii equation instead. Properties of both models for deep and shallow water cases are studied in detail, including conservation laws and the base states corresponding to axisymmetric solitary waves. Stability analyses of the latter lead to singular eigenvalue problems, which dictate the use of analytical tools. We identify the conditions resulting in the transverse instability of the concentric solitons revealing crucial differences from their plane counterparts. Of particular interest here are the effects of surface tension and cylindrical geometry on the occurrence of transverse instability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源