论文标题
在线定价激励措施来采样新的信息
Online Pricing Incentive to Sample Fresh Information
论文作者
论文摘要
如今,驾驶员(例如TripAdvisor)邀请移动用户(例如驱动程序)邀请了控制信息时代(AOI)的各种途径的新信息。但是,自私的驾驶员更喜欢穿越最短路径,而不是在时间和汽油上额外成本的其他路径。为了激励驾驶员路线和采样各种路径,本文是第一个提出在线定价的提供商,以便在经济上奖励驱动程序,以奖励驱动因素,以奖励各种路由和控制随时间和空间路径域的实际AOI动态。在不了解驾驶员的成本甚至到达的情况下,应解决此在线定价优化问题,并且由于时间和空间的维度诅咒而难以理解。如果只有一条最短的路径,我们将利用马尔可夫决策过程(MDP)技术来分析问题。因此,我们设计了一种线性时间算法,用于返回最佳的在线定价,在该价格上,较大的AOI需要更高的定价奖励。如果有许多最短的路径,我们证明一次定价是最佳的,但是选择最大电流AOI的路径并不是最佳的。然后,我们提出了一种新的向后群集计算方法,并开发了一种近似算法,以将不同的途径随着时间的流逝而交替。也许令人惊讶的是,我们对近似比的分析表明,我们的算法的性能方法更接近最佳的情况下。
Today mobile users such as drivers are invited by content providers (e.g., Tripadvisor) to sample fresh information of diverse paths to control the age of information (AoI). However, selfish drivers prefer to travel through the shortest path instead of the others with extra costs in time and gas. To motivate drivers to route and sample diverse paths, this paper is the first to propose online pricing for a provider to economically reward drivers for diverse routing and control the actual AoI dynamics over time and spatial path domains. This online pricing optimization problem should be solved without knowing drivers' costs and even arrivals, and is intractable due to the curse of dimensionality in both time and space. If there is only one non-shortest path, we leverage the Markov decision process (MDP) techniques to analyze the problem. Accordingly, we design a linear-time algorithm for returning optimal online pricing, where a higher pricing reward is needed for a larger AoI. If there are a number of non-shortest paths, we prove that pricing one path at a time is optimal, yet it is not optimal to choose the path with the largest current AoI. Then we propose a new backward-clustered computation method and develop an approximation algorithm to alternate different paths to price over time. Perhaps surprisingly, our analysis of approximation ratio suggests that our algorithm's performance approaches closer to optimum given more paths.