论文标题

通过深度学习框架进行文本描述编码的交通事件持续时间预测

Traffic incident duration prediction via a deep learning framework for text description encoding

论文作者

Grigorev, Artur, Mihaita, Adriana-Simona, Saleh, Khaled, Piccardi, Massimo

论文摘要

由于时空事件发生的随机性质,在报告的交通中断开始时缺乏信息,并且缺乏运输工程中的高级方法来从过去的事故中获得见解,因此预测交通事故持续时间是一个很难解决的问题。本文提出了一个新的融合框架,用于通过将机器学习与交通流/速度和事件描述作为特征进行集成来预测有限信息的事件持续时间,并通过多种深度​​学习方法编码(ANN AUTOCODER和角色级别的LSTM-ANN情感分类器)。本文在运输和数据科学中构建了跨学科建模方法。该方法提高了应用于基线事件报告的最佳表现ML模型的入射持续时间预测准确性。结果表明,与标准线性或支持向量回归模型相比,我们提出的方法可以提高准确性$ 60 \%$,并且相对于混合深度学习自动编码的GBDT模型的进一步提高了$ 7 \%$,这似乎胜过所有其他模型。应用区是旧金山市,富含交通事件日志(全国交通事故数据集)和过去的历史交通拥堵信息(Caltrans绩效测量系统的5分钟精度测量)。

Predicting the traffic incident duration is a hard problem to solve due to the stochastic nature of incident occurrence in space and time, a lack of information at the beginning of a reported traffic disruption, and lack of advanced methods in transport engineering to derive insights from past accidents. This paper proposes a new fusion framework for predicting the incident duration from limited information by using an integration of machine learning with traffic flow/speed and incident description as features, encoded via several Deep Learning methods (ANN autoencoder and character-level LSTM-ANN sentiment classifier). The paper constructs a cross-disciplinary modelling approach in transport and data science. The approach improves the incident duration prediction accuracy over the top-performing ML models applied to baseline incident reports. Results show that our proposed method can improve the accuracy by $60\%$ when compared to standard linear or support vector regression models, and a further $7\%$ improvement with respect to the hybrid deep learning auto-encoded GBDT model which seems to outperform all other models. The application area is the city of San Francisco, rich in both traffic incident logs (Countrywide Traffic Accident Data set) and past historical traffic congestion information (5-minute precision measurements from Caltrans Performance Measurement System).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源