论文标题
真正的多方纠缠在一维的玻色 - 哈伯德模型中,沮丧地跳跃
Genuine multipartite entanglement in a one-dimensional Bose-Hubbard model with frustrated hopping
论文作者
论文摘要
挫败感和量子纠缠是量子多体系统中的两个外来量子特性。但是,尽管进行了几项努力,但它们之间的确切关系仍然难以捉摸。在这项工作中,我们在描述光学晶格中描述强相关的超电位骨原子的物理模型中探讨了挫败感与量子纠缠之间的关系。特别是,我们考虑了包括最近的邻居($ t_ {1} $)和沮丧的下一个邻居($ t_ {2} $)的一维bose-hubbard模型($ t_ {1} $)的跳跃,并检查了在现场相互作用($ u $)的相互作用($ u $)和如何在不同量子相关的基础状态下导致的量子相关状态。然后,我们分析模型中量子纠缠的行为。特别是,我们计算通过广义几何措施量化的真正的多方纠缠,并通过两分纠缠和其他相关顺序参数进行比较研究。我们观察到,真正的多部分纠缠在整个被考虑的参数制度中具有非常丰富的行为,而挫败感并不一定有利于产生大量的参数。此外,我们表明,在具有强量子波动的区域中,颗粒在所有动量模式下保持高度离域,并共享非常少量的两分和多部分纠缠。我们的工作说明了在密切相关的系统的基础状态下,需要单独关注主导秩序行为和量子纠缠的必要性。
Frustration and quantum entanglement are two exotic quantum properties in quantum many-body systems. However, despite several efforts, an exact relation between them remains elusive. In this work, we explore the relationship between frustration and quantum entanglement in a physical model describing strongly correlated ultracold bosonic atoms in optical lattices. In particular, we consider the one-dimensional Bose-Hubbard model comprising both nearest-neighbor ($t_{1}$) and frustrated next-nearest neighbor ($t_{2}$) hoppings and examine how the interplay of onsite interaction ($U$) and hoppings results in different quantum correlations dominating in the ground state of the system. We then analyze the behavior of quantum entanglement in the model. In particular, we compute genuine multipartite entanglement as quantified through the generalized geometric measure and make a comparative study with bipartite entanglement and other relevant order parameters. We observe that genuine multipartite entanglement has a very rich behavior throughout the considered parameter regime and frustration does not necessarily favor generating a high amount of it. Moreover, we show that in the region with strong quantum fluctuations, the particles remain highly delocalized in all momentum modes and share a very low amount of both bipartite and multipartite entanglement. Our work illustrates the necessity to give separate attention to dominating ordering behavior and quantum entanglement in the ground state of strongly correlated systems.