论文标题
通过APSP查找平衡稀疏切割的简单框架
A Simple Framework for Finding Balanced Sparse Cuts via APSP
论文作者
论文摘要
我们提出了一种非常简单和直观的算法,可以通过最短的路径在图中找到平衡的稀疏切割。我们的算法结合了一个新的乘法重量框架,用于解决单位重量多商品流和标准的球增长参数。每次使用Dijkstra的算法来计算最短的路径,每次都提供了一种非常简单的算法,该算法会在时间$ \ wideTilde {o}(m^2/ϕ)$中运行,并找到一个$ \ \ widetilde {o}(O}(ϕ)$ - sparce balanced cut,当给定的图形$ spares balanced cut,当给定的图形$ sable $ sable cuts $ sparse $ - vacte $ - 将我们的算法与已知的确定性数据结构相结合,以在增加边缘重量(减少设置)下回答所有最短路径(APSP)查询,我们获得了一个简单的确定性算法,发现$ M^{o M^{o(1)ϕ $ -Sparse-sparse-sparse-sparse均衡地均衡,以$ M^{1+O(1+O(1+O(1+O(1+O(1+O(1+O(1+O), Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).
We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\widetilde{O}(m^2/ϕ)$ and finds an $\widetilde{O}(ϕ)$-sparse balanced cut, when the given graph has a $ϕ$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}ϕ$-sparse balanced cuts in $m^{1+o(1)}/ϕ$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).