论文标题

准周期心血管信号的语义分割的因果干预方案

A Causal Intervention Scheme for Semantic Segmentation of Quasi-periodic Cardiovascular Signals

论文作者

Wang, Xingyao, Li, Yuwen, Gao, Hongxiang, Cheng, Xianghong, Li, Jianqing, Liu, Chengyu

论文摘要

精确分割是分析心脏周期语义信息并使用心血管信号捕获异常的至关重要的第一步。但是,在深层语义分割的领域中,通常会单方面与数据的个体属性相混淆。走向心血管信号,准周期性是要学习的必不可少的特征,被视为形态学属性(AM)和节奏(AR)的合成。我们的主要见解是在深度表示的生成过程中抑制对AM或AR的过度依赖性。为了解决这个问题,我们建立了一个结构性因果模型,作为分别自定义AM和AR的干预方法的基础。在本文中,我们提出了对比性因果干预(CCI),以在框架级对比框架下形成一种新颖的训练范式。干预可以消除单个属性带来的隐式统计偏见,并导致更客观的表示。我们对QRS位置和心脏声音分割的受控条件进行了全面的实验。最终结果表明,对于QRS位置,我们的方法显然可以提高高达0.41%的性能,而心脏声音分段的性能则可以提高2.73%。该方法的效率推广到多个数据库和嘈杂的信号。

Precise segmentation is a vital first step to analyze semantic information of cardiac cycle and capture anomaly with cardiovascular signals. However, in the field of deep semantic segmentation, inference is often unilaterally confounded by the individual attribute of data. Towards cardiovascular signals, quasi-periodicity is the essential characteristic to be learned, regarded as the synthesize of the attributes of morphology (Am) and rhythm (Ar). Our key insight is to suppress the over-dependence on Am or Ar while the generation process of deep representations. To address this issue, we establish a structural causal model as the foundation to customize the intervention approaches on Am and Ar, respectively. In this paper, we propose contrastive causal intervention (CCI) to form a novel training paradigm under a frame-level contrastive framework. The intervention can eliminate the implicit statistical bias brought by the single attribute and lead to more objective representations. We conduct comprehensive experiments with the controlled condition for QRS location and heart sound segmentation. The final results indicate that our approach can evidently improve the performance by up to 0.41% for QRS location and 2.73% for heart sound segmentation. The efficiency of the proposed method is generalized to multiple databases and noisy signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源