论文标题

AI支持工具的开发和临床评估,用于改善远程医疗质量

Development and Clinical Evaluation of an AI Support Tool for Improving Telemedicine Photo Quality

论文作者

Vodrahalli, Kailas, Ko, Justin, Chiou, Albert S., Novoa, Roberto, Abid, Abubakar, Phung, Michelle, Yekrang, Kiana, Petrone, Paige, Zou, James, Daneshjou, Roxana

论文摘要

远程医疗利用率在19009年大流行期间加速了,皮肤条件是常见的用例。但是,患者发送的照片的质量仍然是一个主要限制。为了解决这个问题,我们开发了TrueImage 2.0,这是一种人工智能(AI)模型,用于评估远程医疗的患者照片质量,并向患者提供实时反馈以改善照片质量。 TrueImage 2.0接受了临床医生注释的1700张远程医疗图像的培训。在357个远程医疗图像的回顾性数据集中,TrueImage 2.0有效地识别了质量差的图像(接收器操作员曲线曲线(ROC-AUC)= 0.78)和质量差的原因(ROC-AUC模糊= 0.84,照明问题ROC-AUC = 0.70)。在年龄,性别和肤色之间的表现是一致的。接下来,我们评估了患者真实性2.0相互作用是否通过对98名患者的前瞻性临床试验研究改善了提交的照片质量。 TrueImage 2.0将质量不佳的患者数量减少了68.0%。

Telemedicine utilization was accelerated during the COVID-19 pandemic, and skin conditions were a common use case. However, the quality of photographs sent by patients remains a major limitation. To address this issue, we developed TrueImage 2.0, an artificial intelligence (AI) model for assessing patient photo quality for telemedicine and providing real-time feedback to patients for photo quality improvement. TrueImage 2.0 was trained on 1700 telemedicine images annotated by clinicians for photo quality. On a retrospective dataset of 357 telemedicine images, TrueImage 2.0 effectively identified poor quality images (Receiver operator curve area under the curve (ROC-AUC) =0.78) and the reason for poor quality (Blurry ROC-AUC=0.84, Lighting issues ROC-AUC=0.70). The performance is consistent across age, gender, and skin tone. Next, we assessed whether patient-TrueImage 2.0 interaction led to an improvement in submitted photo quality through a prospective clinical pilot study with 98 patients. TrueImage 2.0 reduced the number of patients with a poor-quality image by 68.0%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源