论文标题

无定形聚合物中的结构,动力学和氢运输:从分子动力学模拟中对自由体积元件分布与局部分段动力学之间的相互作用的分析

Structure, Dynamics and Hydrogen Transport in Amorphous Polymers: An Analysis of the Interplay Between Free Volume Element Distribution and Local Segmental Dynamics from Molecular Dynamics Simulations

论文作者

Otmi, Mohammed Al, Willmore, Frank, Sampath, Janani

论文摘要

膜性能的重要指标是自由体积元素(FVE):微孔空间空间由聚合物链散装群的效率低下而产生。随着聚合物链的不可逆转重组,FVE会随着时间的流逝而降低。尽管聚合物柔韧性对膜转运特性有影响,但这种影响的分子性质仍然没有得到充分理解。通过建立局部链动力学与游离体积元件(FVE)的分布之间的相关性,可以在非晶聚合物膜中更有效地调节渗透传输。在这项工作中,我们实施了全部原子分子动力学(MD)模拟,以探索三种具有不同骨架柔韧性不同的聚合物中链动力学与游离体积之间的关系:聚甲基苯乙烯(PMP)(PMP),聚苯乙烯(PS)和HAB-6FDA热重排聚合物(TRP)。我们在不同的温度下构建这些聚合物,并检查温度如何影响FVE分布和节段迁移率。我们的分析表明,与大体中的原子相比,FVE附近的链段具有更高的迁移率。这种差异的程度随链柔韧性而增加。通过增加温度来增加链的灵活性,从而导致FVE分布更广泛。刚性聚合物(例如TRP)显示出最强大的FVE分布,并且不会受到温度变化的显着影响。为了通过聚合物基质捕获渗透剂扩散,插入氢,并在不同温度下测量扩散。氢迁移率受聚合物链的FVE结构和整体迁移率的影响。在低温下,氢迁移率受空隙分布的影响,而在高温下,聚合物动力学决定了氢的转运。

An important indicator of membrane performance are free volume elements (FVEs): microporous void spaces created by the inefficient packing of bulky groups along the polymer chain. FVEs tend to degrade over time as polymer chains reorganize irreversibly. While it is widely accepted that polymer flexibility has an impact on membrane transport properties, the molecular nature of this impact is still not well-understood. By establishing a correlation between local chain dynamics and the distribution of free volume elements (FVEs), penetrant transport can be regulated more efficiently in amorphous polymer membranes. In this work, we implement all-atom molecular dynamics (MD) simulations to explore the relationship between chain dynamics and free volume in three polymers with different levels of backbone flexibility: polymethylpentene (PMP), polystyrene (PS), and HAB-6FDA thermally rearranged polymer (TRP). We construct these polymers at different temperatures and examine how temperature impacts the FVE distribution and segmental mobility. Our analysis shows that chain segments near FVEs have higher mobility compared to the atoms in the bulk; the extent of this difference increases with chain flexibility. Increasing chain flexibility by increasing the temperature results in a broader FVE distribution. Rigid polymers such as TRP show the most robust FVE distribution and are not significantly affected by temperature change. To capture penetrant diffusion through the polymer matrix, hydrogen is inserted, and the diffusion is measured at different temperatures; hydrogen mobility is influenced by the FVE structure and overall mobility of polymer chains. At low temperatures, hydrogen mobility is influenced by void distribution, while at high temperatures, polymer dynamics dictates hydrogen transport.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源