论文标题

自动标签序列生成,用于提示序列到序列模型

Automatic Label Sequence Generation for Prompting Sequence-to-sequence Models

论文作者

Yu, Zichun, Gao, Tianyu, Zhang, Zhengyan, Lin, Yankai, Liu, Zhiyuan, Sun, Maosong, Zhou, Jie

论文摘要

提示将下游应用程序作为语言建模任务施放,与使用预训练的模型进行标准微调相比,已显示出样本有效的效率。但是,提示的一个陷阱是需要手动设计的模式,其结果可能是不直觉的,需要大量的验证集来调整。为了应对挑战,我们提出了一种全自动提示方法Autoseq:(1)我们在序列到序列模型上采用自然语言提示,从而实现自由形式生成和更大的标签搜索空间; (2)我们提出标签序列 - 无限长度的短语以口头表达标签 - 这消除了手动模板的需求,并且比单个标签单词更有表现; (3)我们使用Beam Search自动生成大量的标签序列候选物,并提出对比度重新排列以获得最佳组合。 Autoseq显着胜过其他无手动设计方法,例如软提示调整,适配器调整和自动搜索单个标签单词;生成的标签序列比各种任务上的精选手动序列更好。我们的方法揭示了几次学习中序列模型的潜力,并在通用和自动提示的道路上阐明了灯光。本文的源代码可以从https://github.com/thunlp/seq2seq-prompt获得。

Prompting, which casts downstream applications as language modeling tasks, has shown to be sample efficient compared to standard fine-tuning with pre-trained models. However, one pitfall of prompting is the need of manually-designed patterns, whose outcome can be unintuitive and requires large validation sets to tune. To tackle the challenge, we propose AutoSeq, a fully automatic prompting method: (1) We adopt natural language prompts on sequence-to-sequence models, enabling free-form generation and larger label search space; (2) We propose label sequences -- phrases with indefinite lengths to verbalize the labels -- which eliminate the need of manual templates and are more expressive than single label words; (3) We use beam search to automatically generate a large amount of label sequence candidates and propose contrastive re-ranking to get the best combinations. AutoSeq significantly outperforms other no-manual-design methods, such as soft prompt tuning, adapter tuning, and automatic search on single label words; the generated label sequences are even better than curated manual ones on a variety of tasks. Our method reveals the potential of sequence-to-sequence models in few-shot learning and sheds light on a path to generic and automatic prompting. The source code of this paper can be obtained from https://github.com/thunlp/Seq2Seq-Prompt.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源