论文标题
事实:学习整数序列背后的抽象
FACT: Learning Governing Abstractions Behind Integer Sequences
论文作者
论文摘要
整数序列对于承认完整描述的概念的建模至关重要。我们介绍了有关学习此类概念的新颖观点,并放下一组基准测试任务,旨在通过机器学习模型进行概念理解。这些任务间接评估模型的抽象能力,并挑战它们,以插入和外向地从观察代表性示例中获得的知识进行推理。为了进一步研究知识代表和推理的研究,我们介绍了事实,即“精选抽象理解工具包”。该工具包围绕着包含有机和合成条目的整数序列的大数据集,用于数据预处理和生成的库,一组模型性能评估工具以及基线模型实现的集合,从而使未来的进步轻松地创造了。
Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease.