论文标题
ESTA:电子竞技轨迹和动作数据集
ESTA: An Esports Trajectory and Action Dataset
论文作者
论文摘要
体育由于其全球影响力和影响力丰富的预测任务,是部署机器学习模型的令人兴奋的领域。但是,由于其规模,准确性和可访问性,传统运动的数据通常不适合研究使用。为了解决这些问题,我们转向电子竞技,这是一个越来越多的域,它涵盖了类似于传统运动的视频游戏。由于电子竞技数据是通过服务器日志而不是外围传感器获取的,因此电子竞技提供了一个独特的机会,可以获得大量清洁和详细的时空数据,类似于传统运动中收集的数据。为了解析电子竞技数据,我们开发了AWPY,这是一个开源电子竞技游戏日志解析库,可以从游戏日志中提取玩家轨迹和动作。使用AWPY,我们可以从1,558个游戏日志中解析86万动作,79万游戏框架和417K轨迹,从专业的反击比赛中创建电子竞技轨迹和动作(ESTA)数据集。 ESTA是迄今为止最大,最颗粒状的公共运动数据集之一。我们使用ESTA使用特定于玩家的信息来开发基准来赢得预测。 ESTA数据可从https://github.com/pnxenopoulos/esta获得,并且AWPY通过PYPI公开。
Sports, due to their global reach and impact-rich prediction tasks, are an exciting domain to deploy machine learning models. However, data from conventional sports is often unsuitable for research use due to its size, veracity, and accessibility. To address these issues, we turn to esports, a growing domain that encompasses video games played in a capacity similar to conventional sports. Since esports data is acquired through server logs rather than peripheral sensors, esports provides a unique opportunity to obtain a massive collection of clean and detailed spatiotemporal data, similar to those collected in conventional sports. To parse esports data, we develop awpy, an open-source esports game log parsing library that can extract player trajectories and actions from game logs. Using awpy, we parse 8.6m actions, 7.9m game frames, and 417k trajectories from 1,558 game logs from professional Counter-Strike tournaments to create the Esports Trajectory and Actions (ESTA) dataset. ESTA is one of the largest and most granular publicly available sports data sets to date. We use ESTA to develop benchmarks for win prediction using player-specific information. The ESTA data is available at https://github.com/pnxenopoulos/esta and awpy is made public through PyPI.