论文标题

使用深钢筋学习,机器人群中的无碰撞模式发现

Collisionless Pattern Discovery in Robot Swarms Using Deep Reinforcement Learning

论文作者

Sharma, Nelson, Ghosh, Aswini, Misra, Rajiv, Mukhopadhyay, Supratik, Sharma, Gokarna

论文摘要

我们提出了一个基于强化的学习框架,用于自动发现在脂肪机器人群的任何初始配置中可用的模式。特别是,我们对脂肪机器人群中无碰撞收集和相互可见性的问题进行建模,并发现使用我们的框架来解决它们的模式。我们表明,通过根据某些约束(例如相互可见性和安全接口)来塑造奖励信号,机器人可以发现无碰撞的轨迹,导致形成良好的聚集和可见性模式。

We present a deep reinforcement learning-based framework for automatically discovering patterns available in any given initial configuration of fat robot swarms. In particular, we model the problem of collision-less gathering and mutual visibility in fat robot swarms and discover patterns for solving them using our framework. We show that by shaping reward signals based on certain constraints like mutual visibility and safe proximity, the robots can discover collision-less trajectories leading to well-formed gathering and visibility patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源