论文标题
用量子场探测宇宙学奇点:开放和封闭的FLRW宇宙
Probing cosmological singularities with quantum fields: Open and closed FLRW universes
论文作者
论文摘要
最近指出的是,线性量子字段$ \ hat ϕ(x)$可以有意义地在空间平坦的弗里德曼,莱玛特,罗伯逊,沃克(flrw)Universes \ cite \ cite {adls2021}的大爆炸(和大键)上传播。回想一下,$ \ hat ϕ(x)$,以及重新归一化的观察值$ \ langle \ hat ϕ(x)^2 \ rangle_ {ren} $和$ \ langle \ hat t_ {ab} {ab}(x)\ rangle_ {rangle_ {ren} $,已经在分布量field-indmimum field in n in classion insmumum field nories。结果表明,即使将这些空间时间放大以包括大爆炸(或大键),它们也可以作为定义明确的分布扩展。我们将这些结果推广到空间闭合和开放的FLRW模型,表明这种宇宙学奇异性的“驯服”并不是由于空间平坦度而导致的技术简化的工件。我们的分析还提供了$ \ langle \ hat ϕ(x)\ hat ϕ(x')\ rangle_ {ren} $,$ \ langle \ hat ϕ(x)^2 \ rangle_ {rangle_ {ren} $和$ \ langle \ hat t_ t_ ab {ab}(ab and iniim iniim and coolly)的明确表达式。耦合了无质量标量字段,并讨论了$ \ langle \ hat t_ {ab}(x)(x)\ rangle_ {ren} $的定义中的歧义。尽管技术表达比在空间平坦的情况下更为复杂,但也存在一个意外的概念简化:现在不存在红外差异\ cite {fp},因为实际上,空间曲率提供了自然的截止。最后,我们进一步阐明了量子场理论可以继续得到充分定义的意义,即使扩展的时空由于奇异性而不是全球双曲线,并提出了进一步工作的方向。
It was recently pointed out that linear quantum fields $\hat ϕ(x)$ can be meaningfully propagated across the big bang (and the big crunch) singularities of spatially flat Friedmann, Lemaître, Robertson, Walker (FLRW) universes \cite{ADLS2021}. Recall that $\hat ϕ(x)$, as well as renormalized observables $\langle\hat ϕ(x)^2 \rangle_{ren}$ and $\langle \hat T_{ab}(x)\rangle_{ren}$, are distribution-valued already in Minkowskian quantum field theories. It was shown that they can be extended as well-defined distributions even when these space-times are enlarged to include the big-bang (or the big crunch). We generalize these results to spatially closed and open FLRW models, showing that this `tameness' of cosmological singularities is not an artifact of the technical simplifications due to spatial flatness. Our analysis also provides explicit expressions of $\langle\hat ϕ(x) \hat ϕ(x') \rangle_{ren}$, $\langle\hat ϕ(x)^2 \rangle_{ren}$ and $\langle \hat T_{ab}(x)\rangle_{ren}$ in closed and open universes for minimally coupled massless scalar fields and discuss the ambiguities in the definition of $\langle \hat T_{ab}(x)\rangle_{ren}$ at the big-bang. While the technical expressions are more complicated than in the spatially flat case, there is also an unexpected conceptual simplification: the infrared divergence \cite{fp} is now absent because, in effect, the spatial curvature provides a natural cutoff. Finally, we further clarify the sense in which quantum field theory can continue to be well defined even though the extended space-time is not globally hyperbolic because of the singularity, and suggest directions for further work.