论文标题

通过控制屏障功能的可区分安全控制器设计

Differentiable Safe Controller Design through Control Barrier Functions

论文作者

Yang, Shuo, Chen, Shaoru, Preciado, Victor M., Mangharam, Rahul

论文摘要

基于学习的控制器,例如神经网络(NN)控制器,可以表现出很高的经验性能,但缺乏正式的安全保证。为了解决此问题,已将控制障碍功能(CBF)作为安全过滤器应用,以监视和修改基于学习的控制器的输出,以确保闭环系统的安全性。但是,这种修饰可能是近视的,具有不可预测的长期影响。在这项工作中,我们提出了一个安全的NN控制器,该控制器采用了基于CBF的安全层,并调查了基于学习的控制中安全的NN控制器的性能。具体而言,比较了两个控制器的公式:一个是基于投影的,另一个依赖于我们提出的集合理论参数化。两种方法都证明了在数值实验中使用CBF作为单独的安全滤波器的改进的闭环性能。

Learning-based controllers, such as neural network (NN) controllers, can show high empirical performance but lack formal safety guarantees. To address this issue, control barrier functions (CBFs) have been applied as a safety filter to monitor and modify the outputs of learning-based controllers in order to guarantee the safety of the closed-loop system. However, such modification can be myopic with unpredictable long-term effects. In this work, we propose a safe-by-construction NN controller which employs differentiable CBF-based safety layers, and investigate the performance of safe-by-construction NN controllers in learning-based control. Specifically, two formulations of controllers are compared: one is projection-based and the other relies on our proposed set-theoretic parameterization. Both methods demonstrate improved closed-loop performance over using CBF as a separate safety filter in numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源