论文标题
有目的的进步:通过上下文和结构指导渐进的DNN
Progressive with Purpose: Guiding Progressive Inpainting DNNs through Context and Structure
论文作者
论文摘要
在过去十年中,深度学习的出现极大地帮助了图像介绍。尽管实现了有希望的性能,但基于深度学习的载体算法仍然因结构和上下文特征的融合而造成的失真而挣扎,这些特征通常是从卷积编码器的深层和浅层层中获得的。在这一观察过程中,我们提出了一个新型的渐进式介绍网络,该网络维持了处理的图像的结构和上下文完整性。更具体地说,受高斯和拉普拉斯金字塔的启发,提出的网络的核心是一个名为GLE的特征提取模块。堆叠GLE模块使网络能够从不同的图像频率组件中提取图像特征。这种能力对于维持结构和上下文完整性很重要,对于高频组件对应于结构信息,而低频组件对应于上下文信息。提出的网络利用GLE功能以迭代方式逐渐以损坏的图像填充缺失区域。我们的基准测试实验表明,所提出的方法在许多最新介绍算法上的性能明显改善。
The advent of deep learning in the past decade has significantly helped advance image inpainting. Although achieving promising performance, deep learning-based inpainting algorithms still struggle from the distortion caused by the fusion of structural and contextual features, which are commonly obtained from, respectively, deep and shallow layers of a convolutional encoder. Motivated by this observation, we propose a novel progressive inpainting network that maintains the structural and contextual integrity of a processed image. More specifically, inspired by the Gaussian and Laplacian pyramids, the core of the proposed network is a feature extraction module named GLE. Stacking GLE modules enables the network to extract image features from different image frequency components. This ability is important to maintain structural and contextual integrity, for high frequency components correspond to structural information while low frequency components correspond to contextual information. The proposed network utilizes the GLE features to progressively fill in missing regions in a corrupted image in an iterative manner. Our benchmarking experiments demonstrate that the proposed method achieves clear improvement in performance over many state-of-the-art inpainting algorithms.