论文标题
神经景观:物理 - 不合时宜的神经操作员启用参数光子设备模拟
NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric Photonic Device Simulation
论文作者
论文摘要
光学计算是一种新兴技术,用于下一代高效人工智能(AI),其速度超高和效率。电磁场模拟对于光子设备和电路的设计,优化和验证至关重要。但是,昂贵的数值模拟显着阻碍了光子电路设计循环中的可扩展性和转环。最近,已经提出了物理信息的神经网络来预测具有预定义参数的部分微分方程(PDE)的单个实例的光场解。它们复杂的PDE公式和缺乏有效的参数化机制限制了在实际仿真方案中其灵活性和概括。在这项工作中,首次提出了一个被称为Neurolight的物理敏锐的神经操作员框架,以学习一个频率域的麦克斯韦PDE家族,以进行超快速的参数光子设备模拟。我们通过几种新技术来平衡神经照射的效率和概括。具体而言,我们将不同的设备离散到统一域中,代表具有紧凑型波的参数PDE,并通过掩盖的源建模对入射光进行编码。我们使用参数效率的跨形神经块设计模型,并采用基于叠加的增强来进行数据效率学习。通过这些协同的方法,神经亮像可以将其推广到一个看不见的仿真设置的大空间,比数值求解器显示了2个型的模拟速度,并且比先前的神经网络模型以降低约54%的预测误差,而参数少约44%。我们的代码可从https://github.com/jeremiemelo/neurolight获得。
Optical computing is an emerging technology for next-generation efficient artificial intelligence (AI) due to its ultra-high speed and efficiency. Electromagnetic field simulation is critical to the design, optimization, and validation of photonic devices and circuits. However, costly numerical simulation significantly hinders the scalability and turn-around time in the photonic circuit design loop. Recently, physics-informed neural networks have been proposed to predict the optical field solution of a single instance of a partial differential equation (PDE) with predefined parameters. Their complicated PDE formulation and lack of efficient parametrization mechanisms limit their flexibility and generalization in practical simulation scenarios. In this work, for the first time, a physics-agnostic neural operator-based framework, dubbed NeurOLight, is proposed to learn a family of frequency-domain Maxwell PDEs for ultra-fast parametric photonic device simulation. We balance the efficiency and generalization of NeurOLight via several novel techniques. Specifically, we discretize different devices into a unified domain, represent parametric PDEs with a compact wave prior, and encode the incident light via masked source modeling. We design our model with parameter-efficient cross-shaped NeurOLight blocks and adopt superposition-based augmentation for data-efficient learning. With these synergistic approaches, NeurOLight generalizes to a large space of unseen simulation settings, demonstrates 2-orders-of-magnitude faster simulation speed than numerical solvers, and outperforms prior neural network models by ~54% lower prediction error with ~44% fewer parameters. Our code is available at https://github.com/JeremieMelo/NeurOLight.