论文标题

通过声学通道的指纹机器人运动

Fingerprinting Robot Movements via Acoustic Side Channel

论文作者

Shah, Ryan, Ahmed, Mujeeb, Nagaraja, Shishir

论文摘要

在本文中,我们提出了声学侧通道的攻击,该攻击利用智能手机麦克风记录了操作中的机器人来利用声音的声学特性来指纹机器人的动作。在这项工作中,我们考虑了仅配备智能手机麦克风的机器人系统(例如技术人员或机器人操作员)的物理接近(例如技术人员或机器人操作员)的可能性。通过声学侧通道,我们证明,确实有可能不仅可以在3D空间内的单个机器人运动,而且还可以进行运动模式,这些运动模式可能导致运动的目的(即手术机器人正在进行的手术程序),从而导致潜在的隐私侵犯。经过评估,我们发现可以用大约75%的精度将单个机器人运动刻印出来,并以更细粒度的移动元数据(如距离和速度)稍微降低。此外,整个精度约为62%的精度,可以重建工作流程,并具有更复杂的动作,例如采摘或包装,以几乎完美的精度重建。除此之外,在某些环境(例如手术环境)中,可以通过VOIP记录和传输音频,例如教育/教学目的或远程远程医疗。这里的问题是,即使采用了VoIP通信,同一攻击也能否成功,并且数据包损耗如何影响捕获的音频和攻击的成功?使用智能手机捕获的普通音频的声音的相同特征,这次攻击平均为90%准确的VoIP样品,比没有使用VoIP编解码器的基线高15%。这打开了有关匿名通信的新研究问题,以保护机器人系统免受VoIP通信网络的声学侧渠道攻击。

In this paper, we present an acoustic side channel attack which makes use of smartphone microphones recording a robot in operation to exploit acoustic properties of the sound to fingerprint a robot's movements. In this work we consider the possibility of an insider adversary who is within physical proximity of a robotic system (such as a technician or robot operator), equipped with only their smartphone microphone. Through the acoustic side-channel, we demonstrate that it is indeed possible to fingerprint not only individual robot movements within 3D space, but also patterns of movements which could lead to inferring the purpose of the movements (i.e. surgical procedures which a surgical robot is undertaking) and hence, resulting in potential privacy violations. Upon evaluation, we find that individual robot movements can be fingerprinted with around 75% accuracy, decreasing slightly with more fine-grained movement meta-data such as distance and speed. Furthermore, workflows could be reconstructed with around 62% accuracy as a whole, with more complex movements such as pick-and-place or packing reconstructed with near perfect accuracy. As well as this, in some environments such as surgical settings, audio may be recorded and transmitted over VoIP, such as for education/teaching purposes or in remote telemedicine. The question here is, can the same attack be successful even when VoIP communication is employed, and how does packet loss impact the captured audio and the success of the attack? Using the same characteristics of acoustic sound for plain audio captured by the smartphone, the attack was 90% accurate in fingerprinting VoIP samples on average, 15% higher than the baseline without the VoIP codec employed. This opens up new research questions regarding anonymous communications to protect robotic systems from acoustic side channel attacks via VoIP communication networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源