论文标题

基于提取的内部层析成像的深度学习重建

Extraction-based Deep Learning Reconstruction of Interior Tomography

论文作者

Chen, Changyu, Xing, Yuxiang, Zhang, Li, Chen, Zhiqiang

论文摘要

内部断层扫描是计算机断层扫描中辐射剂量降低的典型策略,其中仅扫描了某个特定区域(ROI)。然而,鉴于投影数据的截断,常规分析算法的ROI重建可能会遭受严重的拔罐工件的影响。在本文中,我们提出了一种新的基于提取的深度学习方法,以重建内部层析成像。我们的方法在双重域中起作用,其中正式域网络(SDNET)估算了外部区域对截断投影的贡献,而图像域网络(IDNET)进一步减轻了伪影。与先前的基于外推的方法不同,SDNET旨在通过提取获得完全纯粹的Roi sinogran图,而不是ROI和外部区域的完全非截断的正式图。我们的实验验证了所提出的方法,结果表明所提出的方法可以披露更可靠的结构。与基于外推的方法相比,它具有更好的概括性能,获得了更好的图像质量。

Interior tomography is a typical strategy for radiation dose reduction in computed tomography, where only a certain region-of-interest (ROI) is scanned. However, given the truncated projection data, ROI reconstruction by conventional analytical algorithms may suffer from severe cupping artifacts. In this paper, we proposed a new extraction-based deep learning method for the reconstruction of interior tomography. Our approach works in dual domains where a sinogram-domain network (SDNet) estimates the contribution of the exterior region to the truncated projection and an image-domain network (IDNet) further mitigates artifacts. Unlike the previous extrapolation-based methods, SDNet is intended to obtain a complete ROI-only sinogram via extraction instead of a fully non-truncated sinogram for both the ROI and exterior regions. Our experiments validated the proposed method and the results indicate that the proposed method can disclose more reliable structures. It achieved better image quality with better generalization performance than extrapolation-based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源