论文标题

从Kosterlitz-无旋式费米子和旋转链中的波克罗夫斯基 - 塔拉波夫过渡,以及下一个最新的邻居相互作用

From Kosterlitz-Thouless to Pokrovsky-Talapov transitions in spinless fermions and spin chains with next-nearest neighbour interactions

论文作者

Chepiga, Natalia

论文摘要

我们研究了在无旋转费米的模型中,在三分之一填充时,量子相跃迁的性质是在无旋转费米斯模型中,最接近和下一个最新的邻里相互作用。使用广泛的密度矩阵重归其化组(DMRG)模拟,我们表明过渡改变了它的性质。我们表明,对于较弱的下一个最邻居的耦合,过渡是kosterlitz-与持续化预测一致。我们还提供了强大的数值证据,这些证据对于大型的邻近较高的拒绝,过渡属于Pokrovsky-Talapov Univerality类,描述了一个非统一的相称 - 固定型过渡。最后,我们认为过渡性质的变化是挫败感引起的不可通信性的结果,甚至在零掺杂时也意识到。简要讨论了XXZ链与XXZ链的背景下的含义。

We investigate the nature of the quantum phase transition out of charge-density-wave phase in the spinless fermion model with nearest- and next-nearest-neighbor interaction at one-third filling. Using an extensive Density Matrix Renormalization Group (DMRG) simulations we show that the transition changes it nature. We show that for weak next-nearest-neighbor coupling the transition is of Kosterlitz-Thouless type in agreement with bosonisation predictions. We also provide strong numerical evidences that for large next-nearest-neighbor repulsion the transition belongs to the Pokrovsky-Talapov univerality class describing a non-conformal commensurate-incommensurate transition. Finally, we argue that the change of the nature of the transition is a result of incommensurability induced by frustration and realized even at zero doping. The implications in the context of XXZ chain with next-nearest-neighbor Ising interaction is briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源