论文标题
基于模拟的单分子力光谱的推断
Simulation-based inference of single-molecule force spectroscopy
论文作者
论文摘要
单分子力光谱(SMFS)是研究分子自组织的强大方法。然而,该分子与永远存在的实验装置的偶联引入了伪影,这使这些实验的解释变得复杂。进行统计推断以学习隐藏的分子特性是一项挑战,因为这些测量结果会产生非马克维亚时间序列,甚至最小的模型也会导致棘手的可能性。为了克服这些挑战,我们开发了一个基于称为基于仿真推理(SBI)的新型统计方法的计算框架。 SBI使我们能够直接估计贝叶斯后部,并通过将机械模型编码为模拟器与概率深度学习,从而从SMFS提取了减少SMF的定量模型。使用合成数据,我们可以系统地解开隐藏分子特性与实验伪影的测量。物理模型与机器学习密度估计的集成是一般,透明,易于使用的,并且广泛适用于其他类型的生物物理实验。
Single-molecule force spectroscopy (smFS) is a powerful approach to studying molecular self-organization. However, the coupling of the molecule with the ever-present experimental device introduces artifacts, that complicates the interpretation of these experiments. Performing statistical inference to learn hidden molecular properties is challenging because these measurements produce non-Markovian time-series, and even minimal models lead to intractable likelihoods. To overcome these challenges, we developed a computational framework built on novel statistical methods called simulation-based inference (SBI). SBI enabled us to directly estimate the Bayesian posterior, and extract reduced quantitative models from smFS, by encoding a mechanistic model into a simulator in combination with probabilistic deep learning. Using synthetic data, we could systematically disentangle the measurement of hidden molecular properties from experimental artifacts. The integration of physical models with machine learning density estimation is general, transparent, easy to use, and broadly applicable to other types of biophysical experiments.