论文标题

Metaball成像的离散元素晶格Boltzmann方法用于与沉降案例研究的复杂形态的流体粒子系统

Metaball-Imaging Discrete Element Lattice Boltzmann Method for fluid-particle system of complex morphologies with settling case study

论文作者

Zhao, Yifeng, Zhang, Pei, Lei, Liang, Galindo-Torres, S. A., Li, Stan Z.

论文摘要

流体粒子系统对颗粒形态高度敏感。尽管已经对形状描述符和耦合方案进行了许多尝试,但如何模拟粒子粒子和粒子流体相互作用,并在准确性和效率之间保持平衡仍然是一个挑战,尤其是当考虑复杂形状的粒子时。这项研究介绍了基于元图像(MI)的离散元素晶格Boltzmann方法(DELBM),用于具有不规则形状颗粒的流体模拟。主要的创新是MI算法捕获DELBM模拟的真实晶粒形状的MI算法,在该算法中,由于其复杂形状的多功能和有效表达性,将Metaball函数用作数学表示。通过基于Newton-Raphson方案的最接近点的渐变计算,可以很好地解决接触式检测。与LBM的耦合是通过经典的夏普接口方案完成的。至于培养,实施了基于反弹规则的本地折磨算法。对三个不规则天然鹅卵石的三个沉降实验的验证表明,该模型在探测浸入流体系统中的不规则形状颗粒培养基的微力学方面具有有效且有力。该模型对形状诱导的物理过程的研究的潜力通过数值示例进行了进一步研究,以“在各种形状中的“起草,亲吻和翻滚”现象。

Fluid-particle systems are highly sensitive to particle morphologies. While many attempts have been made on shape descriptors and coupling schemes, how to simulate the particle-particle and particle-fluid interactions with a balance between accuracy and efficiency is still a challenge, especially when complex-shaped particles are considered. This study presents a Metaball-Imaging (MI) based Discrete Element Lattice Boltzmann Method (DELBM) for fluid simulations with irregular shaped particles. The major innovation is the MI algorithm to capture the real grain shape for DELBM simulations,where the Metaball function is utilized as the mathematical representation due to its versatile and efficient expressiveness of complex shapes.The contact detection is tackled robustly by gradient calculation of the closest point with a Newton-Raphson based scheme. And the coupling with LBM is accomplished by a classic sharp-interface scheme. As for refiling, a local refiling algorithm based on the bounce back rule is implemented. Validations on three settling experiments of irregular-shaped natural cobblestones indicate the proposed model to be effective and powerful in probing micromechanics of irregular-shaped granular media immersed in fluid systems. The potential of this model on studies of shape-induced physical processes is further investigated with numerical examples on the "drafting, kissing and tumbling" phenomenon of pair particles in various shapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源