论文标题

样品,作物,曲目:自我监督的移动3D对象检测城市驾驶激光雷达

Sample, Crop, Track: Self-Supervised Mobile 3D Object Detection for Urban Driving LiDAR

论文作者

Shin, Sangyun, Golodetz, Stuart, Vankadari, Madhu, Zhou, Kaichen, Markham, Andrew, Trigoni, Niki

论文摘要

近年来,深度学习导致了在城市驾驶场景中移动(即具有运动能力)物体的检测方面取得的巨大进展。监督方法通常需要大型培训集的注释;因此,人们对利用弱,半或自我监督的方法避免这种情况非常兴趣,并取得了很大的成功。虽然弱和半监督的方法需要一些注释,但自我监督的方法已经使用了诸如运动之类的线索来完全减轻注释的需求。但是,完全没有注释通常会降低其性能,而在运动组进行分组期间出现的歧义可以抑制其找到准确的物体边界的能力。在本文中,我们提出了一种称为SCT的新的自制移动对象检测方法。这同时使用运动提示和预期对象大小来提高检测性能,并预测3D方向的边界框的密集网格以改善对象发现。我们在Kitti跟踪基准上的最先进的自我监督的移动对象检测方法TCR极大地胜过,并实现了全面监督的PV-RCNN ++方法的30%以内IOUS <= 0.5。

Deep learning has led to great progress in the detection of mobile (i.e. movement-capable) objects in urban driving scenes in recent years. Supervised approaches typically require the annotation of large training sets; there has thus been great interest in leveraging weakly, semi- or self-supervised methods to avoid this, with much success. Whilst weakly and semi-supervised methods require some annotation, self-supervised methods have used cues such as motion to relieve the need for annotation altogether. However, a complete absence of annotation typically degrades their performance, and ambiguities that arise during motion grouping can inhibit their ability to find accurate object boundaries. In this paper, we propose a new self-supervised mobile object detection approach called SCT. This uses both motion cues and expected object sizes to improve detection performance, and predicts a dense grid of 3D oriented bounding boxes to improve object discovery. We significantly outperform the state-of-the-art self-supervised mobile object detection method TCR on the KITTI tracking benchmark, and achieve performance that is within 30% of the fully supervised PV-RCNN++ method for IoUs <= 0.5.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源