论文标题
部分可观测时空混沌系统的无模型预测
Generic eigenstructures of Hermitian pencils
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We obtain the generic complete eigenstructures of complex Hermitian $n\times n$ matrix pencils with rank at most $r$ (with $r\leq n$). To do this, we prove that the set of such pencils is the union of a finite number of bundle closures, where each bundle is the set of complex Hermitian $n\times n$ pencils with the same complete eigenstructure (up to the specific values of the finite eigenvalues). We also obtain the explicit number of such bundles and their codimension. The cases $r=n$, corresponding to general Hermitian pencils, and $r<n$ exhibit surprising differences, since for $r<n$ the generic complete eigenstructures can contain only real eigenvalues, while for $r=n$ they can contain real and non-real eigenvalues. Moreover, we will see that the sign characteristic of the real eigenvalues plays a relevant role for determining the generic eigenstructures of Hermitian pencils.