论文标题
用准模式附近的黑洞扰动电势的约束修改
Constraining modifications of black hole perturbation potentials near the light ring with quasinormal modes
论文作者
论文摘要
在经过修改的重力理论中,出现在Schrödinger样方程中的电势也被修改了,这些方程描述了非旋转黑洞的扰动。在本文中,我们提出:是否可以通过黑洞的准模式频率的高精度重力波测量来限制这些修饰?我们将修改扩展到一个小的扰动参数中,以调节偏离一般相关潜力和$ m/r $的偏差。我们在扰动参数中计算修饰电势的准模式至二次顺序。然后,我们使用马尔可夫链 - 蒙特 - 卡洛(MCMC)方法在$ m/r $ $扩展中恢复``乐观''场景中的系数,在这种情况下,我们一次将它们变化为````乐观'''场景。在这两种情况下,我们都发现各个参数的界限都不强大。由于准模式频率与光环附近的扰动电势的行为有关,因此我们提出了不同的策略。受Wentzel-Kramers-brillouin(WKB)理论的启发,我们证明了在光环下电势及其第二个衍生物的价值。这些约束可以通过事件范围望远镜和未来仪器对基于黑洞光谱的测试和黑洞“阴影”的观察进行更直接的比较。
In modified theories of gravity, the potentials appearing in the Schrödinger-like equations that describe perturbations of non-rotating black holes are also modified. In this paper we ask: can these modifications be constrained with high-precision gravitational-wave measurements of the black hole's quasinormal mode frequencies? We expand the modifications in a small perturbative parameter regulating the deviation from the general-relativistic potential, and in powers of $M/r$. We compute the quasinormal modes of the modified potential up to quadratic order in the perturbative parameter. Then we use Markov-chain-Monte-Carlo (MCMC) methods to recover the coefficients in the $M/r$ expansion in an ``optimistic'' scenario where we vary them one at a time, and in a ``pessimistic'' scenario where we vary them all simultaneously. In both cases, we find that the bounds on the individual parameters are not robust. Because quasinormal mode frequencies are related to the behavior of the perturbation potential near the light ring, we propose a different strategy. Inspired by Wentzel-Kramers-Brillouin (WKB) theory, we demonstrate that the value of the potential and of its second derivative at the light ring can be robustly constrained. These constraints allow for a more direct comparison between tests based on black hole spectroscopy and observations of black hole `shadows'' by the Event Horizon Telescope and future instruments.