论文标题

代数和o最小流量超出了CoCompact案例

Algebraic and o-minimal flows beyond the cocompact case

论文作者

Dembner, Spencer, Spink, Hunter

论文摘要

令$ x \ subset \ mathbb {c}^n $为代数品种,让$λ\ subset \ subset \ mathbb {c}^n $是一个离散的子组,其真实且复杂的跨度同意。我们描述了$ x $ in $ \ mathbb {c}^n /λ$的图像的拓扑封闭,从而在$λ$是cocompact的情况下扩展了Peterzil-Starchenko的结果。 当$ x \ subset \ mathbb {r}^n $在o最小结构中可以定义时,我们还获得了类似的扩展名,而对$λ$没有限制,并且作为应用程序证明了gallinaro的以下猜想:对于封闭的半代数$ x \ subset $ x \ subset \ mathbb {c} c}^n $(例如, $ \ exp:\ mathbb {c}^n \ to(\ mathbb {c}^*) $ \ mathbb {t} _i \ subset(\ mathbb {c}^*)^n $是正数紧凑型真实Tori和$ c_i \ subset \ subset \ mathbb {c}^n $是半algebraic。

Let $X \subset \mathbb{C}^n$ be an algebraic variety, and let $Λ\subset \mathbb{C}^n$ be a discrete subgroup whose real and complex spans agree. We describe the topological closure of the image of $X$ in $\mathbb{C}^n / Λ$, thereby extending a result of Peterzil-Starchenko in the case when $Λ$ is cocompact. We also obtain a similar extension when $X\subset \mathbb{R}^n$ is definable in an o-minimal structure with no restrictions on $Λ$, and as an application prove the following conjecture of Gallinaro: for a closed semi-algebraic $X\subset \mathbb{C}^n$ (such as a complex algebraic variety) and $\exp:\mathbb{C}^n\to (\mathbb{C}^*)^n$ the coordinate-wise exponential map, we have $\overline{\exp(X)}=\exp(X)\cup \bigcup_{i=1}^m \exp(C_i)\cdot \mathbb{T}_i$ where $\mathbb{T}_i\subset (\mathbb{C}^*)^n$ are positive-dimensional compact real tori and $C_i\subset \mathbb{C}^n$ are semi-algebraic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源