论文标题

摊销的变异推断:系统评价

Amortized Variational Inference: A Systematic Review

论文作者

Ganguly, Ankush, Jain, Sanjana, Watchareeruetai, Ukrit

论文摘要

变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法不可扩展到大型数据集,并且无法轻易推断出越野数据点的数据点,而无需重新运行优化过程。该领域的最新发展,如随机,黑盒和摊销VI,已帮助解决了这些问题。如今,生成建模任务广泛利用摊销VI的效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。

The core principle of Variational Inference (VI) is to convert the statistical inference problem of computing complex posterior probability densities into a tractable optimization problem. This property enables VI to be faster than several sampling-based techniques. However, the traditional VI algorithm is not scalable to large data sets and is unable to readily infer out-of-bounds data points without re-running the optimization process. Recent developments in the field, like stochastic-, black box-, and amortized-VI, have helped address these issues. Generative modeling tasks nowadays widely make use of amortized VI for its efficiency and scalability, as it utilizes a parameterized function to learn the approximate posterior density parameters. In this paper, we review the mathematical foundations of various VI techniques to form the basis for understanding amortized VI. Additionally, we provide an overview of the recent trends that address several issues of amortized VI, such as the amortization gap, generalization issues, inconsistent representation learning, and posterior collapse. Finally, we analyze alternate divergence measures that improve VI optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源