论文标题
ACROOFOD:一种跨域的自适应方法,几个射击对象检测
AcroFOD: An Adaptive Method for Cross-domain Few-shot Object Detection
论文作者
论文摘要
在域移位下,跨域几射击对象检测旨在通过一些注释的目标数据适应目标域中的对象检测器。存在两个重大挑战:(1)高度不足的目标域数据; (2)潜在的过度适应和误导性是由不当放大的目标样本而没有任何限制引起的。为了应对这些挑战,我们提出了一种由两个部分组成的自适应方法。首先,我们提出了一种自适应优化策略,以选择类似于目标样本的增强数据,而不是盲目增加数量。具体而言,我们过滤了增强的候选者,这些候选者在一开始就显着偏离了目标特征分布。其次,为了进一步释放数据限制,我们提出了多级域感知数据增强,以增加增强数据的多样性和合理性,从而利用了跨图像前景 - 背景混合物。实验表明,所提出的方法在多个基准测试中实现了最先进的性能。
Under the domain shift, cross-domain few-shot object detection aims to adapt object detectors in the target domain with a few annotated target data. There exists two significant challenges: (1) Highly insufficient target domain data; (2) Potential over-adaptation and misleading caused by inappropriately amplified target samples without any restriction. To address these challenges, we propose an adaptive method consisting of two parts. First, we propose an adaptive optimization strategy to select augmented data similar to target samples rather than blindly increasing the amount. Specifically, we filter the augmented candidates which significantly deviate from the target feature distribution in the very beginning. Second, to further relieve the data limitation, we propose the multi-level domain-aware data augmentation to increase the diversity and rationality of augmented data, which exploits the cross-image foreground-background mixture. Experiments show that the proposed method achieves state-of-the-art performance on multiple benchmarks.