论文标题
关于真实Banach空间中不变子空间的一些评论(修订版)
Some remarks on invariant subspaces in real Banach spaces (revised version)
论文作者
论文摘要
事实证明,如果每个操作员$ t \ in a $中的每个操作员满足条件$ | 1- \ | 1- \ | 1- \ varepsilon t^2 \ | _e | _e | _e \ le 1 + o(\ varepsilon)\ vareps n pereps $ n perts,则证明,如果每个运算符$ t \ | 1 + o(\ varepsilon)\ vareps \ vareps \ vareps,则证明,如果每个操作员满足条件$ | 1- \ varepsilon t^2 \ | $ \ | \ cdot \ | _e $是基本规范。这意味着每个基本上是在真正的希尔伯特空间上的自助会运营商的接班人家族都存在一个不变的子空间。
It is proved that a commutative algebra $A$ of operators on a reflexive real Banach space has an invariant subspace if each operator $T\in A$ satisfies the condition $$\|1- \varepsilon T^2\|_e \le 1 + o(\varepsilon) \text{ when } \varepsilon\searrow 0,$$ where $\|\cdot\|_e$ is the essential norm. This implies the existence of an invariant subspace for every commutative family of essentially selfadjoint operators on a real Hilbert space.