论文标题
O-最低结构和尖锐的细胞分解
Sharply o-minimal structures and sharp cellular decomposition
论文作者
论文摘要
O-Wimimal结构(表示为\ So-Minimal)是O-Wimimal结构的严格子类,旨在捕获由代数几何学和霍奇理论引起的一些更细的结构特征。尖锐的O最小性与每个可定义的相关性设置了一对被称为\ emph {format}和\ emph {gemph {germph {germph}的整数,类似于代数情况下的环境维度和程度;在逻辑操作下给出了这些数量增长的界限;并允许人们根据其格式和程度来控制集合的几何复杂性。这些公理对可定义集的算术特性具有重大影响 - 例如,作者最近使用\ so-Minimation来解决Wilkie在$ \ Mathbb {r} _ {\ exp} $中的理性点上的猜想。 在本文中,我们开发了一些尖锐的O最小结构的基本理论。我们介绍了\ so-Minimal结构类别的降低和等效性的概念。我们给出了\ so-Minimation的定义的三种变体,强度增加,并表明它们都同意减少。我们还考虑了``锐利细胞分解''的问题,即对细胞数量及其格式及其格式及其度的分解。我们表明,每个\ so-minimal结构都可以简化为一个承认尖锐细胞分解的一个,并用它来证明在格式和程度方面的可定义集合的贝蒂数字上。
Sharply o-minimal structures (denoted \so-minimal) are a strict subclass of the o-minimal structures, aimed at capturing some finer features of structures arising from algebraic geometry and Hodge theory. Sharp o-minimality associates to each definable set a pair of integers known as \emph{format} and \emph{degree}, similar to the ambient dimension and degree in the algebraic case; gives bounds on the growth of these quantities under the logical operations; and allows one to control the geometric complexity of a set in terms of its format and degree. These axioms have significant implications on arithmetic properties of definable sets -- for example, \so-minimality was recently used by the authors to settle Wilkie's conjecture on rational points in $\mathbb{R}_{\exp}$-definable sets. In this paper we develop some basic theory of sharply o-minimal structures. We introduce the notions of reduction and equivalence on the class of \so-minimal structures. We give three variants of the definition of \so-minimality, of increasing strength, and show that they all agree up to reduction. We also consider the problem of ``sharp cell decomposition'', i.e. cell decomposition with good control on the number of the cells and their formats and degrees. We show that every \so-minimal structure can be reduced to one admitting sharp cell decomposition, and use this to prove bounds on the Betti numbers of definable sets in terms of format and degree.