论文标题

O-最低结构和尖锐的细胞分解

Sharply o-minimal structures and sharp cellular decomposition

论文作者

Binyamini, Gal, Novikov, Dmitri, Zack, Benny

论文摘要

O-Wimimal结构(表示为\ So-Minimal)是O-Wimimal结构的严格子类,旨在捕获由代数几何学和霍奇理论引起的一些更细的结构特征。尖锐的O最小性与每个可定义的相关性设置了一对被称为\ emph {format}和\ emph {gemph {germph {germph}的整数,类似于代数情况下的环境维度和程度;在逻辑操作下给出了这些数量增长的界限;并允许人们根据其格式和程度来控制集合的几何复杂性。这些公理对可定义集的算术特性具有重大影响 - 例如,作者最近使用\ so-Minimation来解决Wilkie在$ \ Mathbb {r} _ {\ exp} $中的理性点上的猜想。 在本文中,我们开发了一些尖锐的O最小结构的基本理论。我们介绍了\ so-Minimal结构类别的降低和等效性的概念。我们给出了\ so-Minimation的定义的三种变体,强度增加,并表明它们都同意减少。我们还考虑了``锐利细胞分解''的问题,即对细胞数量及其格式及其格式及其度的分解。我们表明,每个\ so-minimal结构都可以简化为一个承认尖锐细胞分解的一个,并用它来证明在格式和程度方面的可定义集合的贝蒂数字上。

Sharply o-minimal structures (denoted \so-minimal) are a strict subclass of the o-minimal structures, aimed at capturing some finer features of structures arising from algebraic geometry and Hodge theory. Sharp o-minimality associates to each definable set a pair of integers known as \emph{format} and \emph{degree}, similar to the ambient dimension and degree in the algebraic case; gives bounds on the growth of these quantities under the logical operations; and allows one to control the geometric complexity of a set in terms of its format and degree. These axioms have significant implications on arithmetic properties of definable sets -- for example, \so-minimality was recently used by the authors to settle Wilkie's conjecture on rational points in $\mathbb{R}_{\exp}$-definable sets. In this paper we develop some basic theory of sharply o-minimal structures. We introduce the notions of reduction and equivalence on the class of \so-minimal structures. We give three variants of the definition of \so-minimality, of increasing strength, and show that they all agree up to reduction. We also consider the problem of ``sharp cell decomposition'', i.e. cell decomposition with good control on the number of the cells and their formats and degrees. We show that every \so-minimal structure can be reduced to one admitting sharp cell decomposition, and use this to prove bounds on the Betti numbers of definable sets in terms of format and degree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源