论文标题

使用平行等级数据和反对称双神经网络预测TTS音频刺激之间的成对偏好

Predicting pairwise preferences between TTS audio stimuli using parallel ratings data and anti-symmetric twin neural networks

论文作者

Valentini-Botinhao, Cassia, Ribeiro, Manuel Sam, Watts, Oliver, Richmond, Korin, Henter, Gustav Eje

论文摘要

自动预测主观听力测试的结果是一项具有挑战性的任务。即使听众之间的偏好是一致的,评分也可能因人而异。虽然先前的工作重点是预测听众的单个刺激评分(平均意见分数),但我们专注于预测主观偏好的更简单任务,即给出了两个语音刺激的同一文本。我们提出了一个基于抗对称双神经网络的模型,该模型是通过对波形及其相应偏好得分训练的。我们探索了注意力和复发性神经网,以解释一对刺激不符合时间的事实。为了获得大型训练集,我们将听众的评分从Mushra测试转换为反映这对中一种刺激的频率高于另一个刺激的频率。具体而言,我们评估了从五年来进行的十二个Mushra评估获得的数据,其中包含由不同扬声器的数据构建的不同TTS系统。我们的结果与经过预测MOS得分的最先进模型相比有利。

Automatically predicting the outcome of subjective listening tests is a challenging task. Ratings may vary from person to person even if preferences are consistent across listeners. While previous work has focused on predicting listeners' ratings (mean opinion scores) of individual stimuli, we focus on the simpler task of predicting subjective preference given two speech stimuli for the same text. We propose a model based on anti-symmetric twin neural networks, trained on pairs of waveforms and their corresponding preference scores. We explore both attention and recurrent neural nets to account for the fact that stimuli in a pair are not time aligned. To obtain a large training set we convert listeners' ratings from MUSHRA tests to values that reflect how often one stimulus in the pair was rated higher than the other. Specifically, we evaluate performance on data obtained from twelve MUSHRA evaluations conducted over five years, containing different TTS systems, built from data of different speakers. Our results compare favourably to a state-of-the-art model trained to predict MOS scores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源