论文标题
高维空间模式排序和使用多平面光转换的光电路设计
High-dimensional spatial mode sorting and optical circuit design using multi-plane light conversion
论文作者
论文摘要
多平面灯转换器(MPLC)是一类新兴的光学设备,能够将一组输入空间光模式转换为新的目标输出模式集。该操作代表了线性光学转换 - 光子学中广受欢迎的能力。 MPLC在经典和量子光学域中具有潜在的应用,在从光学通信到光学计算和成像的字段中。它们由一系列衍射光学元件(“平面”)组成,通常由自由空间隔开。每个平面赋予的相位延迟取决于反设计的过程,最常使用称为波前匹配方法(WMM)的伴随算法,该算法优化了目标和实际MPLC输出之间的相关性。在这项工作中,我们研究了高模式容量MPLC,以创建任意的空间模式分类器和线性光电电路。我们专注于具有少量相平面的设计,以使这些MPLC在实验上可行。为了在这种情况下最好地控制光线,我们基于具有特殊量身定制的目标函数的梯度上升,开发了一种新的逆设计算法,并显示其在低平面限制中如何收敛到MPLC设计,其模态交叉Talk且比使用WMM可实现的偏差更低。我们在实验上展示了几个原型的几个原型高维空间模式分角,以多达55个模式运行,能够基于其Zernike模式,轨道角动量状态或任意随机的空间模式来对光子进行排序。我们讨论了这些原理原始原型的优点和缺点,并描述了未来的改进。我们的工作表明了基于MPLC的高维技术的光明未来。
Multi-plane light converters (MPLCs) are an emerging class of optical device capable of converting a set of input spatial light modes to a new target set of output modes. This operation represents a linear optical transformation - a much sought after capability in photonics. MPLCs have potential applications in both the classical and quantum optics domains, in fields ranging from optical communications, to optical computing and imaging. They consist of a series of diffractive optical elements (the 'planes'), typically separated by free-space. The phase delays imparted by each plane are determined by the process of inverse-design, most often using an adjoint algorithm known as the wavefront matching method (WMM), which optimises the correlation between the target and actual MPLC outputs. In this work we investigate high mode capacity MPLCs to create arbitrary spatial mode sorters and linear optical circuits. We focus on designs possessing low numbers of phase planes to render these MPLCs experimentally feasible. To best control light in this scenario, we develop a new inverse-design algorithm, based on gradient ascent with a specifically tailored objective function, and show how in the low-plane limit it converges to MPLC designs with substantially lower modal cross-talk and higher fidelity than achievable using the WMM. We experimentally demonstrate several prototype few-plane high-dimensional spatial mode sorters, operating on up to 55 modes, capable of sorting photons based on their Zernike mode, orbital angular momentum state, or an arbitrarily randomized spatial mode basis. We discuss the advantages and drawbacks of these proof-of-principle prototypes, and describe future improvements. Our work points to a bright future for high-dimensional MPLC-based technologies.