论文标题
共同体米尔诺公式和斋藤对特征类的猜想
Cohomological Milnor formula and Saito's conjecture on characteristic classes
论文作者
论文摘要
我们确认了斋藤的猜想的准注射案例,即可以根据特征周期来计算由Abbes和saito定义的共同体特征类别。 我们构建了一个相对于可构造捆的分离的形态的非囊性基因座支撑的共同体特征类别。作为该类别功能性能的应用,我们证明了Milnor公式的共同体类似物和导体公式用于(不一定是光滑)的可构造式或骨。
We confirm the quasi-projective case of Saito's conjecture, namely that the cohomological characteristic classes defined by Abbes and Saito can be computed in terms of the characteristic cycles. We construct a cohomological characteristic class supported on the non-acyclicity locus of a separated morphism relatively to a constructible sheaf. As applications of the functorial properties of this class, we prove cohomological analogs of the Milnor formula and the conductor formula for constructible sheaves on (not necessarily smooth) varieties.