论文标题
泊松流生成模型
Poisson Flow Generative Models
论文作者
论文摘要
我们提出了一种新的“泊松流”生成模型(PFGM),该模型将高维半球上的均匀分布映射到任何数据分布中。我们将数据点解释为$ z = 0 $超平面上的电荷,并在带有附加尺寸$ z $的空间中,产生了高维电场(泊松方程解决方案的梯度)。我们证明,如果这些电荷沿电场线向上流动,则它们在$ z = 0 $平面中的初始分布将变成半径$ r $半球的分布,该分布在$ r \ \ r \ to \ infty $限制中变得均匀。为了学习徒的转化,我们估计了增强空间中的归一化场。对于采样,我们设计了一种由物理上有意义的附加维度锚定的向后颂歌:当$ z $达到零时,样品击中了未凸出的数据歧管。在实验上,PFGM在CIFAR-10上的正常流量模型中实现了当前的最新性能,其成立分数为9.68美元,而FID得分为2.35美元。它还可以与最先进的SDE方法相同,同时提供$ 10 \ times $至$ 20 \ $ 20 \ times $ $加速。此外,PFGM似乎对较弱的网络体系结构上的估计误差似乎更宽容,并且对Euler方法中的步进大小进行了鲁棒。该代码可在https://github.com/newbeeer/poisson_flow上找到。
We propose a new "Poisson flow" generative model (PFGM) that maps a uniform distribution on a high-dimensional hemisphere into any data distribution. We interpret the data points as electrical charges on the $z=0$ hyperplane in a space augmented with an additional dimension $z$, generating a high-dimensional electric field (the gradient of the solution to Poisson equation). We prove that if these charges flow upward along electric field lines, their initial distribution in the $z=0$ plane transforms into a distribution on the hemisphere of radius $r$ that becomes uniform in the $r \to\infty$ limit. To learn the bijective transformation, we estimate the normalized field in the augmented space. For sampling, we devise a backward ODE that is anchored by the physically meaningful additional dimension: the samples hit the unaugmented data manifold when the $z$ reaches zero. Experimentally, PFGM achieves current state-of-the-art performance among the normalizing flow models on CIFAR-10, with an Inception score of $9.68$ and a FID score of $2.35$. It also performs on par with the state-of-the-art SDE approaches while offering $10\times $ to $20 \times$ acceleration on image generation tasks. Additionally, PFGM appears more tolerant of estimation errors on a weaker network architecture and robust to the step size in the Euler method. The code is available at https://github.com/Newbeeer/poisson_flow .