论文标题

交通事故风险使用上下文视觉变压器预测

Traffic Accident Risk Forecasting using Contextual Vision Transformers

论文作者

Saleh, Khaled, Grigorev, Artur, Mihaita, Adriana-Simona

论文摘要

最近,由于其对交通清算的重大影响,交通事故风险预测的问题一直引起了智能运输系统社区的关注。在文献中通常使用数据驱动的方法来解决空间和时间事件影响,因为这些方法对于交通事故风险预测问题至关重要,因此通常可以解决此问题。为了实现这一目标,大多数方法构建了不同的体系结构以捕获时空相关性功能,从而使它们对大型交通事故数据集效率低下。因此,在这项工作中,我们提出了一个新颖的统一框架,即是上下文视觉变压器,可以通过端到端的方法进行培训,该方法可以有效地理解问题的空间和时间方面,同时提供准确的交通事故风险预测。我们评估并比较了我们提出的方法的性能与来自两个不同地理位置的两个大规模交通事故数据集的文献的基线方法。结果表明,与文献中先前的最新作品(SOTA)相比,RMSE得分的重大改善,大约为2 \%。此外,我们提出的方法在两个数据集上优于SOTA技术,而仅需要少23倍的计算要求。

Recently, the problem of traffic accident risk forecasting has been getting the attention of the intelligent transportation systems community due to its significant impact on traffic clearance. This problem is commonly tackled in the literature by using data-driven approaches that model the spatial and temporal incident impact, since they were shown to be crucial for the traffic accident risk forecasting problem. To achieve this, most approaches build different architectures to capture the spatio-temporal correlations features, making them inefficient for large traffic accident datasets. Thus, in this work, we are proposing a novel unified framework, namely a contextual vision transformer, that can be trained in an end-to-end approach which can effectively reason about the spatial and temporal aspects of the problem while providing accurate traffic accident risk predictions. We evaluate and compare the performance of our proposed methodology against baseline approaches from the literature across two large-scale traffic accident datasets from two different geographical locations. The results have shown a significant improvement with roughly 2\% in RMSE score in comparison to previous state-of-art works (SoTA) in the literature. Moreover, our proposed approach has outperformed the SoTA technique over the two datasets while only requiring 23x fewer computational requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源