论文标题
FusionVae:RGB图像融合的深层分层自动编码器
FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion
论文作者
论文摘要
传感器融合可以显着提高许多计算机视觉任务的性能。但是,传统的融合方法要么不是数据驱动的,也不能利用先验知识,也不能在给定数据集中找到规律性,或者仅限于单个应用程序。我们通过呈现一种名为FusionVae的新型深层分层自动编码器来克服这一缺点,可以作为许多融合任务的基础。我们的方法能够生成以多个嘈杂,遮挡或仅部分可见的输入图像来调节的多种图像样本。我们得出并优化了融合的条件对数似然的变化下限。为了彻底评估模型的融合功能,我们根据流行的计算机视觉数据集创建了三个用于图像融合的新颖数据集。在我们的实验中,我们表明FusionVae学习了与融合任务相关的汇总信息的表示。结果表明,我们的方法的表现极大地超过了传统方法。此外,我们介绍了不同设计选择的优势和缺点。
Sensor fusion can significantly improve the performance of many computer vision tasks. However, traditional fusion approaches are either not data-driven and cannot exploit prior knowledge nor find regularities in a given dataset or they are restricted to a single application. We overcome this shortcoming by presenting a novel deep hierarchical variational autoencoder called FusionVAE that can serve as a basis for many fusion tasks. Our approach is able to generate diverse image samples that are conditioned on multiple noisy, occluded, or only partially visible input images. We derive and optimize a variational lower bound for the conditional log-likelihood of FusionVAE. In order to assess the fusion capabilities of our model thoroughly, we created three novel datasets for image fusion based on popular computer vision datasets. In our experiments, we show that FusionVAE learns a representation of aggregated information that is relevant to fusion tasks. The results demonstrate that our approach outperforms traditional methods significantly. Furthermore, we present the advantages and disadvantages of different design choices.