论文标题

多用户主动梁切换的深度学习:6G应用

Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application

论文作者

Mismar, Faris B., Gundogan, Alperen, Kaya, Aliye Ozge, Chistyakov, Oleg

论文摘要

本文展示了从用户设备(UE)梁测量以及基站(BS)收集的位置生成的深度学习和时间序列数据,以在属于相同或不同BSS的光束之间进行交接。我们建议使用长期记忆(LSTM)复发性神经网络使用三种不同的方法,并改变了光束测量的回忆次数,以研究用于主动光束交接的预测的性能。模拟表明,尽管UE位置可以提高预测性能,但仅到一定程度。在足够数量的回溯情况下,UE位置与预测准确性无关,因为LSTMS能够根据时间定义的轨迹从隐式定义的位置学习最佳光束。

This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) recurrent neural networks with three different approaches and vary the number of lookbacks of the beam measurements to study the performance of the prediction used for the proactive beam handoff. Simulations show that while UE positions can improve the prediction performance, it is only up to a certain point. At a sufficiently large number of lookbacks, the UE positions become irrelevant to the prediction accuracy since the LSTMs are able to learn the optimal beam based on implicitly defined positions from the time-defined trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源