论文标题

通过结合互动教学和自我探索来解决机器人组装任务

Solving Robot Assembly Tasks by Combining Interactive Teaching and Self-Exploration

论文作者

Montero, Mariano Ramirez, Franzese, Giovanni, Zwanepol, Jeroen, Kober, Jens

论文摘要

人类仍在执行许多高精度(DIS)任务,而这是自动化的理想机会。本文提供了一个框架,该框架使非专家的人类操作员能够教机器人手臂执行复杂的精确任务。该框架使用变量笛卡尔阻抗控制器来执行从动力学人类示范中学到的轨迹。可以给出反馈以进行交互重塑或加快原始演示。董事会本地化是通过对任务板位置的视觉估算来完成的,并通过触觉反馈进行了完善。我们的框架在机器人基准拆卸挑战上进行了测试,该机器人必须执行复杂的精确任务,例如关键插入。结果显示每个操纵子任务的成功率很高,包括盒子中新型姿势的情况。还进行了消融研究以评估框架的组成部分。

Many high precision (dis)assembly tasks are still being performed by humans, whereas this is an ideal opportunity for automation. This paper provides a framework which enables a non-expert human operator to teach a robotic arm to do complex precision tasks. The framework uses a variable Cartesian impedance controller to execute trajectories learned from kinesthetic human demonstrations. Feedback can be given to interactively reshape or speed up the original demonstration. Board localization is done through a visual estimation of the task board position and refined through haptic feedback. Our framework is tested on the Robothon benchmark disassembly challenge, where the robot has to perform complex precision tasks, such as a key insertion. The results show high success rates for each of the manipulation subtasks, including cases when the box is in novel poses. An ablation study is also performed to evaluate the components of the framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源