论文标题
一体降低了规范合奏的密度 - 矩阵功能理论
One-body reduced density-matrix functional theory for the canonical ensemble
论文作者
论文摘要
我们在升高的温度下以有限的基础设置为典型的集合建立了一体降低的密度 - 矩阵功能理论。包括温度可以通过占据所有状态并没有完全占据费米子系统中的状态来保证通用功能的可不同性。我们使用潜在的到1RDM图的通用功能和可逆性的凸度,以表明该亚级别仅包含一个等同于可不同性的元素。这使我们能够证明所有具有纯粹分数职业数量频谱的1RDM($ 0 <n_i <1 \; \ forall_i $)都是唯一的$ v $ - 可以表达为常数。
We establish one-body reduced density-matrix functional theory for the canonical ensemble in a finite basis set at an elevated temperature. Including temperature guarantees differentiability of the universal functional by occupying all states and additionally not fully occupying the states in a fermionic system. We use convexity of the universal functional and invertibility of the potential-to-1RDM map to show that the subgradient contains only one element which is equivalent to differentiability. This allows us to show that all 1RDMs with a purely fractional occupation number spectrum ($0 < n_i < 1 \; \forall_i$) are uniquely $v$-representable up to a constant.