论文标题

分层修剪,以进行有效的差异化推理感知神经体系结构搜索

Tiered Pruning for Efficient Differentialble Inference-Aware Neural Architecture Search

论文作者

Kierat, Sławomir, Sieniawski, Mateusz, Fridman, Denys, Yu, Chen-Han, Migacz, Szymon, Morkisz, Paweł, Florea, Alex-Fit

论文摘要

我们提出了三种新型的修剪技术,以提高推理意识到的可区分神经结构搜索(DNAS)的成本和结果。首先,我们介绍了Prunode,这是DNA的随机双路构建块,它可以使用O(1)内存和计算复杂性在内部隐藏尺寸进行搜索。其次,我们在搜索过程中提出了一种在超级网的随机层内修剪块的算法。第三,我们描述了一种在搜索过程中修剪不必要的随机层的新颖技术。搜索产生的优化模型称为Prunet,并在Imagenet Top-1图像分类精度的推理潜伏期中为NVIDIA V100建立了新的最先进的Pareto前沿。将Prunet作为骨架还优于COCO对象检测任务的GPUNET和EFIDENENET,相对于平均平均精度(MAP)。

We propose three novel pruning techniques to improve the cost and results of inference-aware Differentiable Neural Architecture Search (DNAS). First, we introduce Prunode, a stochastic bi-path building block for DNAS, which can search over inner hidden dimensions with O(1) memory and compute complexity. Second, we present an algorithm for pruning blocks within a stochastic layer of the SuperNet during the search. Third, we describe a novel technique for pruning unnecessary stochastic layers during the search. The optimized models resulting from the search are called PruNet and establishes a new state-of-the-art Pareto frontier for NVIDIA V100 in terms of inference latency for ImageNet Top-1 image classification accuracy. PruNet as a backbone also outperforms GPUNet and EfficientNet on the COCO object detection task on inference latency relative to mean Average Precision (mAP).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源