论文标题

对称性在自由飞行机器人系统中构建几何扁平输出中的作用

The Role of Symmetry in Constructing Geometric Flat Outputs for Free-Flying Robotic Systems

论文作者

Welde, Jake, Kvalheim, Matthew D., Kumar, Vijay

论文摘要

机械系统自然地在描述其固有对称性的主要捆绑包上演变。随之而来的配置歧管分解为对称组和内部形状空间,为许多机器人和生物系统的运动提供了深刻的见解。另一方面,差异平坦的属性使各种机器人系统的有效,有效的计划和控制算法。但是,为任意机器人系统找到平坦输出的实际手段仍然是一个悬而未决的问题。在这项工作中,我们首次使用对称性直接使用对称性来构建平面输出,这表明了这两个域之间令人惊讶的新连接。我们为捆绑包的琐碎化提供了足够的条件,其中组变量本身是平坦的输出。我们将其称为几何扁平输出,因为它是均衡的(即保持对称性的),并且通常是全局或几乎全球,因此通常不受其他平坦输出不享受的属性。在这样的琐碎化中,很容易解决运动计划问题,因为组变量的给定轨迹将完全确定精确实现此运动的形状变量的轨迹。我们为机器人系统提供了部分目录,该目录具有几何扁平输出,并为平面火箭,平面航空操纵器和四极管提供了示例。

Mechanical systems naturally evolve on principal bundles describing their inherent symmetries. The ensuing factorization of the configuration manifold into a symmetry group and an internal shape space has provided deep insights into the locomotion of many robotic and biological systems. On the other hand, the property of differential flatness has enabled efficient, effective planning and control algorithms for various robotic systems. Yet, a practical means of finding a flat output for an arbitrary robotic system remains an open question. In this work, we demonstrate surprising new connections between these two domains, for the first time employing symmetry directly to construct a flat output. We provide sufficient conditions for the existence of a trivialization of the bundle in which the group variables themselves are a flat output. We call this a geometric flat output, since it is equivariant (i.e. maintains the symmetry) and is often global or almost-global, properties not typically enjoyed by other flat outputs. In such a trivialization, the motion planning problem is easily solved, since a given trajectory for the group variables will fully determine the trajectory for the shape variables that exactly achieves this motion. We provide a partial catalog of robotic systems with geometric flat outputs and worked examples for the planar rocket, planar aerial manipulator, and quadrotor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源