论文标题
在不受信任的基于云的量子硬件上,可靠且安全的混合量子古典计算
Robust and Secure Hybrid Quantum-Classical Computation on Untrusted Cloud-Based Quantum Hardware
论文作者
论文摘要
量子计算机当前可以通过基于云的平台访问,该平台允许用户在量子硬件套件上运行其程序。随着量子计算生态系统在受欢迎程度和效用中的增长,有理由期望更多的公司,包括不信任或不信任或不可靠的供应商,以各种价格或性能点开始将量子计算机作为服务作为服务。由于量子硬件上的计算时间昂贵,并且访问队列可能很长,因此用户将被诱使使用较便宜,但可靠或可信赖的硬件。信任较低的供应商可能会篡改量子电路的结果和或参数,从而为用户提供亚最佳解决方案或产生更高的迭代成本。在本文中,我们在示例性混合量子经典算法上对输入参数的对抗性篡改和测量结果进行建模,即量子近似优化算法(QAOA)。我们观察到最大性能降解约为40%。为了通过最小的参数篡改实现可比的性能,用户的最低成本高达20倍。我们同样建议在各种硬件选项中分发计算(迭代),以确保可信赖的计算值得信赖和不信任的硬件。在选定的性能指标中,我们观察到最大改善约为30%。此外,我们提出了几次初始迭代后对参数进行重新定性化,以完全恢复原始程序性能和智能运行自适应式启发式启发式启发式,该启发式启发式启发式启发式启发式启发式,该启发式启发式允许用户在运行时识别篡改/不信任的硬件,并将更多的迭代分配给可靠的硬件,从而最大程度地提高了大约45%。
Quantum computers are currently accessible through a cloud-based platform that allows users to run their programs on a suite of quantum hardware. As the quantum computing ecosystem grows in popularity and utility, it is reasonable to expect more companies, including untrustworthy or untrustworthy or unreliable vendors, to begin offering quantum computers as hardware as a service at various price or performance points. Since computing time on quantum hardware is expensive and the access queue may be long, users will be enticed to use less expensive but less reliable or trustworthy hardware. Less trusted vendors may tamper with the results and or parameters of quantum circuits, providing the user with a sub-optimal solution or incurring a cost of higher iterations. In this paper, we model and simulate adversarial tampering of input parameters and measurement outcomes on an exemplary hybrid quantum classical algorithm namely, Quantum Approximate Optimization Algorithm (QAOA). We observe a maximum performance degradation of approximately 40%. To achieve comparable performance with minimal parameter tampering, the user incurs a minimum cost of 20X higher iteration. We propose distributing the computation (iterations) equally among the various hardware options to ensure trustworthy computing for a mix of trusted and untrusted hardware. In the chosen performance metrics, we observe a maximum improvement of approximately 30%. In addition, we propose re-initialization of the parameters after a few initial iterations to fully recover the original program performance and an intelligent run adaptive split heuristic, which allows users to identify tampered/untrustworthy hardware at runtime and allocate more iterations to the reliable hardware, resulting in a maximum improvement of approximately 45%.