论文标题
Richard-Gavrilyuk模型的对流波解决方案,用于倾斜浅水流
Convective-wave solutions of the Richard-Gavrilyuk model for inclined shallow water flow
论文作者
论文摘要
我们研究了倾斜浅水流的Richard-Gavrilyuk模型,这是融合了涡度的经典圣地方程的扩展,这是对流波解决方案的新特征,类似于与无关紧要的保护法中接触conseconituitiS。这些是流体速度恒定且等于波的传播速度的行进波,但是流体高度和/或腹部(因此涡度)有所不同。连同液压冲击,它们在Riemann溶液的结构中起着重要作用。
We study for the Richard-Gavrilyuk model of inclined shallow water flow, an extension of the classical Saint Venant equations incorporating vorticity, the new feature of convective-wave solutions analogous to contact discontinuitis in inviscid conservation laws. These are traveling waves for which fluid velocity is constant and equal to the speed of propagation of the wave, but fluid height and/or enstrophy (thus vorticity) varies. Together with hydraulic shocks, they play an important role in the structure of Riemann solutions.