论文标题
基于痕量的环流$ r_ {q,0} \ times r_q $ -plwe的基于跟踪的加密分析。
Trace-based cryptanalysis of cyclotomic $R_{q,0}\times R_q$-PLWE for the non-split case
论文作者
论文摘要
我们描述了针对PLWE问题版本的决定性攻击,其中样品是从一定的适当尺寸划分的环形环$ \ Mathbb {f} _q [x]/(φ_{p^k}(x)$ k> 1 $的情况下,$ q \ equiv equiv equiv equiv equiv equiv pm pmod $ k}不能完全在$ \ mathbb {f} _q $上拆分。我们的攻击使用了这样一个事实,即$φ_{p^k}(x)$的根对$ \ mathbb {f} _q $的适当扩展名的范围为零,并且具有压倒性的成功概率,这是输入样本数量的函数。还提供了在枫树中的实现和我们攻击的一些例子。
We describe a decisional attack against a version of the PLWE problem in which the samples are taken from a certain proper subring of large dimension of the cyclotomic ring $\mathbb{F}_q[x]/(Φ_{p^k}(x))$ with $k>1$ in the case where $q\equiv 1\pmod{p}$ but $Φ_{p^k}(x)$ is not totally split over $\mathbb{F}_q$. Our attack uses the fact that the roots of $Φ_{p^k}(x)$ over suitable extensions of $\mathbb{F}_q$ have zero-trace and has overwhelming success probability as a function of the number of input samples. An implementation in Maple and some examples of our attack are also provided.