论文标题

稳定谐波图的近似值的准最佳误差估计值

Quasi-optimal error estimates for the approximation of stable harmonic maps

论文作者

Bartels, Sören, Palus, Christian, Wang, Zhangxian

论文摘要

基于逆函数定理的定量版本和适当的鞍点公式,我们得出了谐波映射的有限元近似值的准最佳误差估计,并通过单位长度约束的节点离散化到球体中。该估计值在自然规律性要求下和解决方案的适当几何稳定性条件下。讨论了对其他目标歧管的扩展,包括椭圆形的边界。

Based on a quantitative version of the inverse function theorem and an appropriate saddle-point formulation we derive a quasi-optimal error estimate for the finite element approximation of harmonic maps into spheres with a nodal discretization of the unit-length constraint. The estimate holds under natural regularity requirements and appropriate geometric stability conditions on solutions. Extensions to other target manifolds including boundaries of ellipsoids are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源