论文标题
稳定谐波图的近似值的准最佳误差估计值
Quasi-optimal error estimates for the approximation of stable harmonic maps
论文作者
论文摘要
基于逆函数定理的定量版本和适当的鞍点公式,我们得出了谐波映射的有限元近似值的准最佳误差估计,并通过单位长度约束的节点离散化到球体中。该估计值在自然规律性要求下和解决方案的适当几何稳定性条件下。讨论了对其他目标歧管的扩展,包括椭圆形的边界。
Based on a quantitative version of the inverse function theorem and an appropriate saddle-point formulation we derive a quasi-optimal error estimate for the finite element approximation of harmonic maps into spheres with a nodal discretization of the unit-length constraint. The estimate holds under natural regularity requirements and appropriate geometric stability conditions on solutions. Extensions to other target manifolds including boundaries of ellipsoids are discussed.