论文标题
RC100:Z = 0.6-2.5的100个巨大星形星系的旋转曲线在银河尺度上几乎没有暗物质
RC100: Rotation Curves of 100 Massive Star-Forming Galaxies at z=0.6-2.5 Reveal Little Dark Matter on Galactic Scales
论文作者
论文摘要
我们分析了HA或CO旋转曲线(RCS),该曲线延伸到几个星系有效半径,用于100个大型,大型的,恒星形成的磁盘星系(SFGS),跨越了Genzel等人提出的先前样品的一倍多。 (2020)和Price等。 (2021)。观察结果是用Eso-Vlt的Sinfoni和KMOS Integrallib Field光谱仪,LBT的LUCI,IRAM的Noema和Alma进行的。我们将主要的轴运动学拟合,具有横梁卷入的,湍流旋转磁盘的前进模型,凸起嵌入了暗物质(DM)光环中,包括压力支持的效果。磁盘有效半径($ r_e〜5 kpc $),$ f_dm(r_e)= v_ {dm}^2(r_e)/v_ {circ}^2(r_e)$,随着z〜1(z〜1(z〜2)$ 0.23 $ pm pm pm pm pm pm pm pm pm pm pm pm pm, 0.18 $),所有星系中的三分之一(一半)是$ f_ {dm}(r_e)<0.28 $的“最大”磁盘。暗物质分数与重型型表面密度成反比,低DM级分需要扁平或核心的内DM密度分布。在Z〜2时,与基于宇宙恒星质量光环质量关系的预期值相比,平均在$ r_e $之内的暗物质质量降低了约40%。 DM缺陷在高星形形成速率(SFR)表面密度($σ_{sfr}> 2.5 m _ {\ odot} yr^{ - 1} kpc^{ - 2} $)和带有巨大凸起的星系($ m_ {bulge}> 10^10^{10} m _ _ _ _ _ _ =恒星或活跃的银河核(AGN)反馈和/或由于卫星积聚或团块迁移而引起的加热的组合,可能会将DM从cuspy驱动到芯质量分布。观察结果可能表明在z〜2 sfgs处有效地积累了大量凸起和中央黑洞。
We analyze Ha or CO rotation curves (RCs) extending out to several galaxy effective radii for 100 massive, large, star-forming disk galaxies (SFGs) across the peak of cosmic galaxy star formation (z~0.6-2.5), more than doubling the previous sample presented by Genzel et al. (2020) and Price et al. (2021). The observations were taken with SINFONI and KMOS integral-field spectrographs at ESO-VLT, LUCI at LBT, NOEMA at IRAM, and ALMA. We fit the major axis kinematics with beam-convolved, forward models of turbulent rotating disks with bulges embedded in dark matter (DM) halos, including the effects of pressure support. The fraction of dark to total matter within the disk effective radius ($R_e ~ 5 kpc$), $f_DM (R_e)=V_{DM}^2 (R_e)/V_{circ}^2 (R_e)$, decreases with redshift: At z~1 (z~2) the median DM fraction is $0.38\pm 0.23$ ($0.27\pm 0.18$), and a third (half) of all galaxies are "maximal" disks with $f_{DM} (R_e)<0.28$. Dark matter fractions correlate inversely with the baryonic surface density, and the low DM fractions require a flattened, or cored, inner DM density distribution. At z~2 there is ~40% less dark matter mass on average within $R_e$ compared to expected values based on cosmological stellar-mass halo-mass relations. The DM deficit is more evident at high star formation rate (SFR) surface densities ($Σ_{SFR}>2.5 M_{\odot} yr^{-1} kpc^{-2}$) and galaxies with massive bulges ($M_{bulge}>10^{10} M_{\odot}$). A combination of stellar or active galactic nucleus (AGN) feedback, and/or heating due to dynamical friction, either from satellite accretion or clump migration, may drive the DM from cuspy into cored mass distributions. The observations plausibly indicate an efficient build-up of massive bulges and central black holes at z~2 SFGs.