论文标题

知识辅助联盟学习用于能量有限的无线网络

Knowledge-aided Federated Learning for Energy-limited Wireless Networks

论文作者

Chen, Zhixiong, Yi, Wenqiang, Liu, Yuanwei, Nallanathan, Arumugam

论文摘要

传统的基于模型聚合的联合学习(FL)方法要求所有本地模型具有相同的体系结构,该模型无法通过异构本地模型支持实用方案。此外,对于资源有限的无线网络而言,频繁的模型交换是昂贵的,因为现代深层神经网络通常具有超过一百万个参数。为了应对这些挑战,我们提出了一个新颖的知识辅助FL(KFL)框架,该框架在每轮学习过程中汇总了光线高水平的数据特征,即知识。该框架允许设备独立设计其机器学习模型,并在培训过程中降低交流开销。然后,我们理论上分析了提出的框架的收敛界限,揭示了在每个回合中计划更多数据量有助于提高学习绩效。此外,如果整个学习过程中的总计划数据量均已固定,则应在早期的回合中安排较大的数据量。受此启发,我们定义了一个新的目标函数,即加权的计划样本量,以将毫无疑问的全局损耗最小化问题转换为可用于设备调度,带宽分配和功率控制的可处理问题。为了处理未知的时间变化的无线通道,我们将在Lyapunov优化框架的帮助下将所考虑的问题转换为每个回合的确定性问题。然后,我们得出了最佳的带宽分配和电源控制解决方案,并开发了有效的在线设备调度算法,以实现学习过程中的能源学习权衡。 MNIST和CIFAR-10的实验结果表明,所提出的KFL能够减少超过99%的通信开销,同时比传统的基于模型聚合的算法获得更好的学习性能。

The conventional model aggregation-based federated learning (FL) approach requires all local models to have the same architecture, which fails to support practical scenarios with heterogeneous local models. Moreover, frequent model exchange is costly for resource-limited wireless networks since modern deep neural networks usually have over a million parameters. To tackle these challenges, we propose a novel knowledge-aided FL (KFL) framework, which aggregates light high-level data features, namely knowledge, in the per-round learning process. This framework allows devices to design their machine-learning models independently and reduces the communication overhead in the training process. We then theoretically analyze the convergence bound of the proposed framework, revealing that scheduling more data volume in each round helps to improve the learning performance. In addition, large data volume should be scheduled in early rounds if the total scheduled data volume during the entire learning course is fixed. Inspired by this, we define a new objective function, i.e., the weighted scheduled data sample volume, to transform the inexplicit global loss minimization problem into a tractable one for device scheduling, bandwidth allocation, and power control. To deal with unknown time-varying wireless channels, we transform the considered problem into a deterministic problem for each round with the assistance of the Lyapunov optimization framework. Then, we derive the optimal bandwidth allocation and power control solution and develop an efficient online device scheduling algorithm to achieve an energy-learning trade-off in the learning process. Experimental results on MNIST and CIFAR-10 show that the proposed KFL is capable of reducing over 99% communication overhead while achieving better learning performance than the conventional model aggregation-based algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源